|

Magnetic Reconnection in the Absence of Three-Dimension Null Point

Авторы: Al-Hachami A.K.H. Опубликовано: 08.12.2019
Опубликовано в выпуске: #6(87)/2019  
DOI: 10.18698/1812-3368-2019-6-50-66

 
Раздел: Математика | Рубрика: Математическая физика  
Ключевые слова: magnetohydrodynamics (MHD), magnetic reconnection, Sun, corona --- Sun, magnetic topology

In this study, a numerical examination is portrayed which explores the idea of 3D reconnection, in the absence of magnetic null points focuses, at a segregated non-ideal region. We center around the subsequent conduct of the magnetic flux, which has been appeared D.I. Pontin et al. (2004), to be on a very basic level diverse in the kinematic routine from the natural two-dimensional conduct. The point of this numerical investigation is to test whether the new properties of 3D kinematic reconnection, depicted by D.I. Pontin et al. (2004) finish to the dynamical routine, where magnetohydrodynamics equations are unraveled. We point likewise specifically to check (or something else) the arrangement by G. Hornig and E.R. Priest (2003) for kinematic 3D reconnection without an magnetic null point

Литература

[1] Sonnerup B.U.O., Paschmann G., Papamastorakis I., et al. Evidence for magnetic field reconnection at the Earth’s magneto pause. J. Geophys. Res., 1981, vol. 86, no. A12, pp. 10049--10067. DOI: https://doi.org/10.1029/JA086iA12p10049

[2] Priest E.R., Lee L.C. Nonlinear magnetic reconnection models with separatrix jets. J. Plasma Phys., 1990, vol. 44, iss. 2, pp. 337--360. DOI: https://doi.org/10.1017/S0022377800015221

[3] Scholer M. Numerical models of magnetic reconnection. Geophys. Astrophys. Fluid Dyn., 1991, vol. 62, iss. 1--4, pp. 51--68. DOI: https://doi.org/10.1080/03091929108229125

[4] Gorbachev V.S. The field topology and frozen-in magnetohydrodynamic flows of plasma in the strong field approximation. PhD thesis. Moscow, Institute of Physics and Engineering, 1998.

[5] Mandrini C.H., Rovira M.G., Demoulin P., et al. Evidence for magnetic reconnection in large-scale magnetic structures in solar flares. Astron. Astrophys., 1993, vol. 272, pp. 609--620.

[6] Priest E.R., Hornig G., Pontin D.I. On the nature of three-dimensional magnetic reconnection. J. Geophys. Res., 2003, vol. 108, iss. A7, art. SSH6-1. DOI: https://doi.org/10.1029/2002JA009812

[7] Berger M.A. Three-dimensional reconnection from a global viewpoint. Proc. Re-connection in Space Plasma. T. Guyenne, J. Hunt (eds.), vol. SP-285. Paris, ESA, pp. 83--86.

[8] Schindler K., Hesse M., Birn J. General magnetic reconnection, parallel electric fields, and helicity. J. Geophys. Res., 1988, vol. 93, iss. A6, pp. 5547--5557. DOI: https://doi.org/10.1029/JA093iA06p05547

[9] Hornig G. The geometry of reconnection. In: An introduction to the geometry and topology of fluid flows. Kluwer, 2001, pp. 295--313.

[10] Yamada M., Ono Y., Hayakawa A., et al. Magnetic reconnection of plasma toroids with cohelicity and counter helicity. Phys. Rev. Lett., 1990, vol. 65, iss. 6, pp. 721--724. DOI: https://doi.org/10.1103/PhysRevLett.65.721

[11] Dahlburg R.B., Antiochos S.K., Norton D. Magnetic flux tube tunneling. Phys. Rev. E, 1997, vol. 56, iss. 2, pp. 2094--2103. DOI: https://doi.org/10.1103/PhysRevE.56.2094

[12] Linton M., Dahlburg R.B., Antiochos S.K. Reconnection of twisted flux tubes as a function of contact angle. Astrophys. J., 2001, vol. 553, no. 2, pp. 905--921. DOI: https://doi.org/10.1086/320974

[13] Galsgaard K., Nordlund A. Heating and activity of the solar corona: 1. Boundary shearing of an initially homogeneous magnetic field. J. Geophys. Res., 1996, vol. 101, iss. A6, pp. 13445--13460. DOI: https://doi.org/10.1029/96JA00428

[14] Galsgaard K., Nordlund A. Heating and activity of the solar corona: 3. Dynamics of a low beta plasma with 3D null points. J. Geophys. Res., 1997, vol. 102, iss. A1, p. 231--248. DOI: https://doi.org/10.1029/96JA02680

[15] Milano L.J., Dmitruk P., Mandrini C.H., et al. Quasi-separatrix layers in a reduced magneto hydrodynamic model of a coronal loop. Astrophys. J., 1999, vol. 521, no. 2, pp. 889--897. DOI: https://doi.org/10.1086/307563

[16] Kliem B., Schumacher J. Dynamic three-dimensional spontaneous reconnection in a sheared current sheet. In: Space plasma simulation. Katlenburg-Lindau, Copernicus Gesellschaft, 2001, pp. 264--267.

[17] Nordlund A., Galsgaard K. A 3D MHD code for parallel computers. Technical report. Astronomical Observatory, Copenhagen Univ., 1997.

[18] Hyman J.M. A method of lines approach to the numerical solution of conservation laws. In: Advances in computer methods for partial differential equations III. IMACS, 1979, pp. 313--343.

[19] Hornig G., Priest E.R. Evolution of magnetic flux in an isolated reconnection process. Phys. Plasmas, 2003, vol. 10, iss. 7, pp. 2712--1721. DOI: https://doi.org/10.1063/1.1580120

[20] Mellor C., Gerrard C., Galsgaard K., et al. Numerical simulations of the flux tube tectonics model for coronal heating. Sol. Phys., 2005, vol. 227, iss. 1, pp. 39--60. DOI: https://doi.org/10.1007/s11207-005-1713-2

[21] Priest E.R., Forbes T.G. Magnetic reconnection: MHD theory and applications. Cambridge Univ. Press, Cambridge, 2000.

[22] Titov V.S., Galsgaard K., Neukirch T. Magnetic pinching of hyperbolic flux tubes. I. Basic estimations. Astrophys. J., 2003, vol. 582, no. 2, pp. 1172--1189. DOI: https://doi.org/10.1086/344799