Walking Wheel

Авторы: Lapshin V.V. Опубликовано: 14.12.2020
Опубликовано в выпуске: #6(93)/2020  
DOI: 10.18698/1812-3368-2020-6-23-35

Раздел: Математика | Рубрика: Дифференциальные уравнения, динамические системы и оптимальное управление  
Ключевые слова: nonlinear dynamics, bipedal walking, walking wheel, rimless wheel

A hypothesis was proposed that during the bipedal walking, there appear stable periodic movements in certain variables (self-oscillations). In this case, it is possible to easily change parameters of this periodic locomotion using open (without feedback) control loops with respect to some of the variables. As the first stage in testing this hypothesis, dynamics of the walking wheel downward movement along an inclined plane was analytically studied. Walking wheel is the simplest model of passive bipedal walking. When it moves, energy is supplied to the system due to the force of gravity action. It is shown that point mapping of the wheel angular speed alteration per step (Poincare map) in the overwhelming majority of cases has one fixed point. This fixed point corresponds either to stable periodic solution (self-oscillation), which is the wheel rolling down an inclined plane, or to the wheel movement ending with its termination as a result of the endless series of impacts with swinging on two legs. In the degenerate case, the Poincare map has two fixed points. One of them corresponds to the unstable limiting cycle matching the wheel rolling, and the second corresponds to a wheel stop. In this case, the limiting cycle is stable outside and unstable inside itself


[1] Beletskiy V.V. Dvunogaya khod’ba. Model’nye zadachi dinamiki i upravleniya [Bipedal walking. Model problems of dynamics and control]. Moscow, Nauka Publ., 1984.

[2] Bolotin Yu.V. On separation of movements in stabilization problem of bipedal walking. Mechanics of Solids, 1979, vol. 14, iss. 4, pp. 41--45.

[3] Formalsky A.M. Peremeshchenie antropomorfnykh mekhanizmov [Motion of anthropomorphic mechanisms]. Moscow, Nauka Publ., 1982.

[4] Grishin A.A., Formal’sky A.M., Lensky A.V., et al. Dynamic walking of vehicle with two telescopic legs controlled by two drives. Int. J. Robot. Res., 1994, vol. 13, iss. 2, pp. 137--147. DOI: https://doi.org/10.1177%2F027836499401300204

[5] Formal’skii A.M. Ballistic walking design via impulsive control. ASCE J. Aerospace Eng., 2010, vol. 23, iss. 2, pp. 129--138. DOI: https://doi.org/10.1061/(ASCE)AS.1943-5525.0000017

[6] Krishchenko A.P., Tkachev S.B., Fetisov D.A. Control of plane motion of two-leg five-link robot moving along stairway. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2006, no. 1 (20), pp. 38--64 (in Russ.).

[7] McGeer T. Passive dynamic walking. Int. J. Robot. Res., 1990, vol. 9, iss. 2, pp. 62--82.

[8] Collins S.H., Wisse M., Ruina A. A Three-dimensional passive dynamic walking robot with two legs and knees. Int. J. Robot. Res., 2001, vol. 20, iss. 7, pp. 607--615. DOI: https://doi.org/10.1177%2F02783640122067561

[9] Pratt J.E. Exploiting inherent robustness and natural dynamics of bipedal walking robots. PhD thesis. MIT, 2000.

[10] http://asimo.honda.com: website (accessed: 21.02.2020).

[11] Raibert M.H. Legged robots that balance. MIT Press, 1986.

[12] Lapshin V.V. Vertical and horizontal motion control of a one-legged hopping machine. Int. J. Robot. Res., 1992, vol. 11, iss. 5, pp. 491--498. DOI: https://doi.org/10.1177%2F027836499201100506

[13] Ahmadi M., Michalska H., Buehler M. Control and stability analysis of limit cycles in a hopping robot. IEEE Trans. Robot., 2007, vol. 23, no. 3, pp. 553--563. DOI: https://doi.org/10.1109/TRO.2007.898956

[14] Todd D.J. Walking machines. An introduction to legged robots. Chapman and Hall Advanced Industrial Technology Series. Boston, MA, Springer, 1985.

[15] Coleman M.J., Ruina A., Chaterjee A. Motions of a rimless spoked wheel: a simple three-dimensional system with impacts. Dyn. Stab. Syst., 1997, vol. 12, iss. 3, pp. 139--159. DOI: https://doi.org/10.1080/02681119708806242

[16] Byl K., Tedrake R. Metastable walking machines. Int. J. Robot. Res., 2009, vol. 28, iss. 8, pp. 1040--1064. DOI: https://doi.org/10.1177%2F0278364909340446

[17] Asano F., Luo Z.-W. Asymptotically stable biped gait generation based on stability principle of rimless wheel. Robotica, 2009, vol. 27, iss. 6, pp. 949--958. DOI: https://doi.org/10.1017/S0263574709005372

[18] Narukawa T., Takamashi M., Yoshida K. Design and stability analysis of a 3D rimless wheel with flat feet and ankle springs. J. Syst. Des. Dyn., 2009, vol. 3, iss. 3, pp. 258--269. DOI: https://doi.org/10.1299/jsdd.3.258

[19] Chou T. Rimless wheel locomotion. demonstrations.wolfram.com: website. Available at: https://demonstrations.wolfram.com/RimlessWheelLocomotion (accessed: 21.02.2020).

[20] Andronov A.A., Vitt A.A., Khaykin S.E. Teoriya kolebaniy [Oscillation theory]. Moscow, Nauka Publ., 1981.