|

Analytical Solution of the Dynamics Equations for a Wave Solid-State Gyroscope Using the Angular Rate Linear Approximation

Авторы: Basarab M.A., Lunin B.S., Ivanov I.P. Опубликовано: 03.11.2021
Опубликовано в выпуске: #5(98)/2021  
DOI: 10.18698/1812-3368-2021-5-17-32

 
Раздел: Математика и механика | Рубрика: Вычислительная математика  
Ключевые слова: wave solid-state gyroscope, angular rate, Weber functions, piecewise linear approximation

The exact solution is provided of the dynamics equation for an elastic inextensible ring being the basic model of a wave solid-state gyroscope with the linear law of the base angular rotation rate alteration. This solution is presented in terms of the parabolic cylinder functions (Weber function). Asymptotic approximations are used in the device certain operating modes. On the basis of the solution obtained, the analytical solution to the equation of the ring dynamics in case of piecewise linear approximation of the angular rate arbitrary profile on a time grid is derived. This significantly expands the class of angular rate dependences, for which the solution could be written down analytically. Earlier, in addition to the simplest case of constant angular rate, solutions were obtained for angular rate varying according to the square root law with time (Airy function), as well as according to the harmonic law (Mathieu function). Error dependence of such approximation on the discretization step in time is estimated numerically. Results obtained make it possible to reduce the number of operations, when it is necessary to study long-term evolutions of the dynamic system oscillations, as well as to quantitatively and qualitatively control convergence of finite-difference schemes in solving dynamics equations for a wave solid-state gyroscope with the ring resonator

Литература

[1] Bryan G.H. On the beats in the vibrations of a revolving cylinder or bell. Proc. Camb. Phil. Soc. Math. Phys. Sci., 1890, vol. 7, pp. 101--111.

[2] Zhuravlev V.F., Klimov D.M. Volnovoy tverdotel’nyy giroskop [Solid-state wave gyroscope]. Moscow, Nauka Publ., 1985.

[3] Klimov D.M., Zhuravlev V.F., Zhbanov Yu.K. Kvartsevyy polusfericheskiy rezonator (volnovoy tverdotel’nyy giroskop) [Quartz hemisphere resonator (solid-state wave gyroscope)]. Moscow, Kim L.A. Publ., 2017.

[4] Lunin B.S., Matveev V.A., Basarab M.A. Volnovoy tverdotel’nyy giroskop. Teoriya i tekhnologiya [Solid-state wave gyroscope. Theory and technology]. Moscow, Radiotekhnika Publ., 2014.

[5] Deleye F. SpaceNaute® the HRG based inertial reference system of Ariane 6 European space launcher. Gyroscopy Navig., 2019, vol. 10, no. 1, pp. 1--6. DOI: https://doi.org/10.1134/S2075108719010036

[6] Basarab M.A., Lunin B.S., Matveev V.A., et al. Static balancing of cylindrical resonators of solid-state wave gyroscopes. Giroskopiya i navigatsiya, 2014, vol. 85, no. 2, pp. 43--51 (in Russ.).

[7] Ayazi F., Najafi K. A HARPSS polysilicon vibrating ring gyroscope. J. Microelectromech. Syst., 2001, vol. 10, iss. 2, pp. 169--179. DOI: https://doi.org/10.1109/84.925732

[8] Liang D.-D., Yang X.-D., Zhang W., et al. Linear, nonlinear dynamics, and sensitivity analysis of a vibratory ring gyroscope. Theor. Appl. Mech. Lett., 2018, vol. 8, iss. 6, pp. 393--403. DOI: https://doi.org/10.1016/j.taml.2018.06.001

[9] Huang D., Tang L., Cao R. Free vibration analysis of planar rotating rings by wave propagation. J. Sound Vib., 2013, vol. 332, iss. 30, pp. 4979--4997. DOI: https://doi.org/10.1016/j.jsv.2013.04.019

[10] Rozelle D.M. The hemispherical resonator gyro: from wineglass to the planets. Proc. 19th AAS/AIAA Space Flight Mechanics Meeting, 2009, pp. 1157--1178.

[11] Basarab M.A., Lunin B.S., Kolesnikov A.V. Numerical-analytical solution of the differential equation of free oscillations of an elastic ring when an arbitrary law of rotation of the basement. Dinamika slozhnykh sistem --- XXI vek [Dynamics of Complex Systems --- XXI Century], 2020, no. 2, pp. 5--15 (in Russ.). DOI: https://doi.org/10.18127/j19997493-202002-01

[12] Basarab M., Lunin B., Vakhlyarskiy D., et al. Investigation of nonlinear high-intensity dynamic processes in a non-ideal solid-state wave gyroscope resonator. Proc. 27th ICINS, 2020, art. 9133943. DOI: https://doi.org/10.23919/ICINS43215.2020.9133943

[13] Cooley C.G., Parker R.G. Vibration of high-speed rotating rings coupled to space-fixed stiffnesses. J. Sound Vib., 2014, vol. 333, iss. 12, pp. 2631--2648. DOI: https://doi.org/10.1016/j.jsv.2014.01.005

[14] Naraykin O.S., Sorokin F.D., Kozubnyak S.A., et al. Numerical simulation of elastic wave precession in the cylindrical resonator of a hemispherical resonator gyroscope featuring a non-homogeneous density distribution. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2017, no. 5 (116), pp. 41--51 (in Russ.). DOI: https://doi.org/10.18698/0236-3941-2017-5-41-51

[15] Vakhlyarskiy D.S., Guskov A.M., Basarab M.A., et al. Using a combination of fem and perturbation method in frequency split calculation of a nearly axisymmetric shell with middle surface shape defect. Nauka i obrazovanie: nauchnoe izdanie [Science and Education: Scientific Publication], 2016, no. 5 (in Russ.). DOI: 10.7463/0516.0839190

[16] Abramowitz M., Stegun I.A., eds. Handbook of mathematical functions with formulas, graphs, and mathematical tables. New York, Dover, 1972.

[17] de Boor C. A practical guide to splines. Springer, 1978.

[18] InnaLabs: website. Available at: http://www.innalabs.com (accessed: 14.05.2021).

[19] Chumankin E.A., Basarab M.A., Matveev V.A., et al. Increase of the measurement range of the solid-state wave gyro with metallic resonator. Pribory i sistemy. Upravlenie, kontrol’, diagnostika [Instruments and Systems: Monitoring, Control, and Diagnostics], 2016, no. 10, pp. 25--37 (in Russ.).