﻿ Numerical Simulation of Laboratory Experiments on the Analysis of Filtration Flows in Poroelastic Media | Вестник МГТУ им. Н.Э. Баумана. Серия. Естественные науки
|

# Numerical Simulation of Laboratory Experiments on the Analysis of Filtration Flows in Poroelastic Media

 Авторы: Borisov V.E., Zenchenko E.V., Kritsky B.V., Savenkov E.B., Trimonova M.A., Turuntaev S.B. Опубликовано: 09.02.2020 Опубликовано в выпуске: #1(88)/2020 DOI: 10.18698/1812-3368-2020-1-16-31 Раздел: Математика | Рубрика: Вычислительная математика Ключевые слова: poroelasticity, filtration, Biot’s problem, laboratory experiment, simulation

The work is devoted to mathematical simulation of laboratory experiments on the single-phase fluid displacement in synthetic porous samples. The basis of the mathematical model used is the system of poroelasticity equations in terms of the Biot's model, which implies that the processes of fluid filtration and the dynamics of changes in the stress-strain state of a continuous medium are considered together in the framework of a single coupled statement. For simulation, the software package developed at the Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, was used. The laboratory experiments considered in this work were performed at the Institute of Geosphere Dynamics, Russian Academy of Sciences. The mathematical model used is briefly presented; the main computational algorithms and the features of their software implementation are described. A detailed description of the laboratory set-up, laboratory experiments themselves and their results are given. A significant part of the work is devoted to the problem statement description in terms of mathematical simulation. The results of calculations are presented; the calculated and experimentally observed dependencies are compared. The possible causes of the observed deviations are analyzed

## Литература

[1] Aziz Kh., Settari A. Petroleum reservoir simulation. Applied Science Publ., 1979.

[2] Economides M.J., Oligney R.E., Valko P. Unified fracture design: bridging the gap between theory and practice. Orsa Press Alvin, 2001.

[3] Biot M.A. General theory of three-dimensional consolidation. J. Appl. Phys., 1941, vol. 12, iss. 2, pp. 155−164. DOI: https://doi.org/10.1063/1.1712886

[4] Trimonova M., Baryshnikov N., Zenchenko E., et al. Study of the unstable fracure propagation in the injection well: numerical and laboratory modeling. SPE Russ. Petroleum Technology Conf., doc. 187822-MS. DOI: https://doi.org/10.2118/187822-MS

[5] Trimonova M., Zenchenko E., Baryshnikov N., et al. Estimation of the hydraulic fracture propagation rate in the laboratory experiment. In: Karev V., Klimov D., Pokazeev K. (eds). Physical and Mathematical Modeling of Earth and Environment Processes. PMMEEP 2017. Springer Geology. Springer, Cham, 2018, pp. 259−268. DOI: https://doi.org/10.1007/978-3-319-77788-7_27

[6] de Pater C.J., Cleary M.P., Quinn T.S., et al. Experimental verification of dimensional analysis for hydraulic fracturing. SPE Production & Facilities, 1994, vol. 9, iss. 4, pp. 230--238. DOI: https://doi.org/10.2118/24994-PA

[7] Borisov V., Ivanov A., Ramazanov M., et al. Poroelastic hydraulic fracture simulation using X-FEM/CPP approach. In: Karev V., Klimov D., Pokazeev K. (eds). Physical and Mathematical Modeling of Earth and Environment Processes (2018). Springer Proceedings in Earth and Environmental Sciences. Cham, Springer, 2019, pp. 323--333. DOI: https://doi.org/10.1007/978-3-030-11533-3_32

[8] Borisov V.E., Ivanov A.V., Kritsky B.V., et al. Numerical simulation of poroelasticity problems. Preprinty IPM im. M.V. Keldysha [KIAM Preprint], 2017, no. 81, 36 p. (in Russ.). DOI: https://doi.org/10.20948/prepr-2017-81

[9] http://www.swig.org/: website (accessed: 15.04.2019).

[10] Ivanov A.V., Khilkov S.A. Aiwlib library as the instrument for creating numerical modeling applications. Nauchnaya vizualizatsiya [Scientific Visualization], 2018, vol. 10, no. 1, pp. 110--127 (in Russ.). DOI: https://doi.org/10.26583/sv.10.1.09

[11] http://getfem.org/gmm.html: website (accessed: 15.04.2019).

[12] https://www.salome-platform.org/: website (accessed: 15.04.2019).

[13] https://ngsolve.org/: website (accessed: 15.04.2019).

[14] Constantinides G., Ulm F.J. Multi-scale poroelastic properties of cement-based materials. FraMCoS-5 Vail. At Vail, Colorado, USA, pp. 1--9.

[15] Hashin Z., Shtrikman S. A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids, 1963, vol. 11, iss. 2, pp. 127--140. DOI: https://doi.org/10.1016/0022-5096(63)90060-7