|

Simulation of Quasistationary Electromagnetic Fields in Regions Containing Disconnected Conducting Subregions

Авторы: Galanin M.P., Sorokin D.L. Опубликовано: 19.02.2019
Опубликовано в выпуске: #1(82)/2019  
DOI: 10.18698/1812-3368-2019-1-4-15

 
Раздел: Математика | Рубрика: Вычислительная математика  
Ключевые слова: Maxwell's equations, normal solution, electrodynamic accelerator, railgun, augmenting turn

Methods for a numerical solution of Maxwell's equations in the quasistationary aproximation in a region with multiply connected conducting subregions were discussed. The case of nontrivial operator kernel was explored. The methods for finding the solution of the linear algebraic equations system were analyzed. The method of introducing a "fictional armature" was offered as alternative method for searching [retrieving] a normal solution of linear algebraic equations. Results of computational experiments were presented. The study was carried out on the example of calculation for electrodynamic acceleration process in the railgun channel

The work was carried out with the state financial support of the RFBR (grant no. 18-01-00252)

Литература

[1] Galanin M.P., Popov Yu.P. Kvazistatsionarnye elektromagnitnye polya v neodnorodnykh sredakh [Quasistationary electromagnetic fields in heterogeneous medium]. Moscow, Nauka Publ., Fizmatlit Publ., 1995.

[2] Galanin M.P., Lototskii A.P., Popov Yu.P., et al. Three-dimensional phenomena at electromagnetic launch of conducting armatures. Matem. mod., 1999, vol. 11, no. 8, pp. 3–22 (in Russ.).

[3] Galanin M.P., Lototskiy A.P., Urazov S.S., et al. The mathematical simulation of metallic contacts erosion in railgun accelerator. Preprinty IPM im. M.V. Keldysha RAN [Preprints of the Keldysh Institute of Applied Mathematics], 2003, no. 79 (in Russ.).

[4] Roch M. Experimental investigation of augmented electromagnetic accelerators. Dissertation zur Erlangung des akademischen Grades eines Doktor der Ingenieurwissenschaften. Universitat Kassel, 2016.

[5] Babakov Y.P., Plekhanov A.V., Zheleznyi V.B. Range and railgun development results at LS&PA SOYUZ. IEEE Trans. Magn., 1995, vol. 31, iss. 1, pp. 259–262. DOI: 10.1109/20.364691

[6] Coffo M. Contribution a la modelisation, a loptimisation et a letude experimentale dun lanceur a rails augmente et du projectile. These pour obtenir le grand de docteur. Autre. Universite de Franche-Comte, 2011. Francais.

[7] Kondratenko A.K., Poltanov A.E., Ryndin V.N., et al. Analysis of some variants of multirail systems with close magnetic coupling. Preprint TRINITI, 1998, no. 0047-A (in Russ.).

[8] Glinov A., Poltanov A., Kondratenko A. Comparison analysis of processes occurring in N-turn and classical railguns. High Temp., 2007, vol. 45, iss. 3, pp. 298–304. DOI: 10.1134/S0018151X07030030

[9] Milekhin Yu.M., Kononov B.V., Syrtsov E.B., et al. Composition conception of multiturn rail accelerator and their implementation. Izvestiya vuzov. Fizika, 2013, vol. 56, no. 6-3, pp. 42–44 (in Russ.).

[10] Watt T., Crawford M. Experimental results from a two-turn 40 mm railgun. IEEE Trans. Magn., 2009, vol. 45, iss. 1, pp. 490–494. DOI: 10.1109/TMAG.2008.2008872

[11] Kulikovskiy A.G., Lyubimov G.A. Magnitnaya gidrodinamika [Magnetic hydrodynamics]. Moscow, Fizmatgiz Publ., 1962.

[12] Urazov S.S. Matematicheskoe modelirovanie mnogomernykh kvazistatsionarnykh elektromagnitnykh poley v kanale elektrodinamicheskogo uskoritelya. Dis. kand. fiz.-mat. nauk [Mathematical simulation of multidimensional quasistationary fields in electromagnetic rail gun channel. Cand. Phys.-Math. Sc. Dis.]. Moscow, 2007 (in Russ.).

[13] Samarskii A.A., Tishkin V.F., Favorski A.P., et al. Operator-difference schemes. Differ. uravn., 1981, vol. 17, no. 7, pp. 1317–1327 (in Russ.).

[14] Galanin M.P. Computer modelling in problems of electromagnetic and kinetic energy conversion. Problems and models. Informatsionnye tekhnologii i vychislitelnye sistemy [Journal of Information Technologies and Computing Systems], 2002, no. 4, pp. 109–123 (in Russ.).

[15] Galanin M.P. Computer modelling in problems of electromagnetic and kinetic energy conversion. Reshenie zadach. Informatsionnye tekhnologii i vychislitelnye sistemy [Journal of Information Technologies and Computing Systems], 2003, no. 1-2, pp. 112–127 (in Russ.).

[16] Samarskiy A.A., Popov Yu.P. Raznostnye metody resheniya gazovoy dinamiki [Differential methods of gas dynamics]. Moscow, Editorial URSS Publ., 2004.

[17] Samarskiy A.A., Nikolaev E.S. Metody resheniya setochnykh uravneniy [Solution technique for finite-difference equations]. Moscow, Nauka Publ., 1978.

[18] Faddeev D.K., Faddeeva V.N. Vychislitelnye metody lineynoy algebry [Computational methods of computer algebra]. Moscow, Fizmatgiz Publ., 1963.

[19] Galanin M.P., Sorokin D.L. Modelling of quasistationary electromagnetic fields in regions with disconnected conductive subregions. Preprinty IPM im. M.V. Keldysha RAN [Preprints of the Keldysh Institute of Applied Mathematics], 2017, no. 19 (in Russ.).

[20] Nikolskiy V.V., Nikolskaya T.I. Elektrodinamika i rasprostranenie radiovoln [Electrodynamics and waves propagation]. Moscow, Nauka Publ., 1989.

[21] Kalantarov P.L., Tseytlin L.A. Raschet induktivnostey [Calculation of inductances]. Leningrad, Energoatomizdat Publ., 1986.