|

Production of TiO2/Cr2O3 Composite Material in the Spherical Form

Авторы: Rogacheva A.O., Khalipova O.S., Brichkov A.S., Kozik V.V. Опубликовано: 16.09.2019
Опубликовано в выпуске: #4(85)/2019  
DOI: 10.18698/1812-3368-2019-4-124-133

 
Раздел: Химия | Рубрика: Физическая химия  
Ключевые слова: titanium dioxide, chrome (III) oxide, spherical composites, template method, sol-gel method

Spherical TiO2/Cr2O3 oxides composites were obtained by template method accompanied with sol-gel method. Ion exchange resins of spherical form (TOKEM-100 and TOKEM-250) were used as an organic polymer matrix. Thermal analysis, X-ray phase analysis and micro-X-ray spectral analysis were used to identify the formation process and compositions of oxides composites. The formation of spherical oxide composite ends at 400 °C and the final products are a mixture of two oxides: Cr2O3 and TiO2 regardless of the structure of the used template. According SEM data prepared TiO2/Cr2O3 composites have spherical form and the size of sphere found to be in a range from 300 to 870 µm

The research was support under the state assignment (no. 10.2281.2017/4.6)

Литература

[1] Barbato P.S., Colussi S., Benedetto Di A., et al. On the origin of high activity and selectivity of CuO/CeO2 catalysts prepared by solution combustion synthesis in CO-PROX reaction. J. Phys. Chem. C, 2016, vol. 120, no. 24, pp. 13039--13048. DOI: https://doi.org/10.1021/acs.jpcc.6b02433

[2] Baidya T., Murayama T., Bera P., et al. Low-temperature CO oxidation over combustion made Fe and Cr doped Co3O4 catalysts: role of dopant’s nature toward achieving superior catalytic activity and stability. J. Phys. Chem. C, 2017, vol. 121, no. 28, pp. 15256--15265. DOI: https://doi.org/10.1021/acs.jpcc.7b04348

[3] Yim S.D., Nam I.-S. Characteristics of chromium oxides supported on TiO2 and Al2O3 for the decomposition of perchloroethylene. J. Catal., 2004, vol. 221, iss. 2, pp. 601--611. DOI: https://doi.org/10.1016/j.jcat.2003.09.026

[4] Akhmadullin R.M., Buy D.N., Akhmadullina A.G., et al. Catalytic activity of metal oxides of variable valence deposited on a polymer matrix in reaction of sodium hydrosulfide oxidation. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2012, vol. 15, no 1, pp. 50--54 (in Russ.).

[5] Rogacheva A., Shamsutdinova A., Brichkov A., et al. Synthesis and properties of spherical catalysts TiO2--SiO2/MkxOy (M = Co and Cr). AIP Conf. Proc., 2017, vol. 1899, no. 1, art. 020007. DOI: https://doi.org/10.1063/1.5009832

[6] Cherian M., Gupta R., Rao M.S., et al. Effect of modifiers on the reactivity of Cr2O3/Al2O3 and Cr2O3/TiO2 catalysts for the oxidative dehydrogenation of propane. Catal. Lett., 2003, vol. 86, no. 4, pp. 179--189. DOI: https://doi.org/10.1023/A:1022655716275

[7] Wahyuningsih S., Hidayatika W.N., Sari P.L., et al. The influence of Cr3+ on TiO3 crystal growth and photoactivity properties. IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 333, no. 1, art. 012023. DOI: https://doi.org/10.1088/1757-899X/333/1/012023

[8] Rahman K.A., Bak T., Atanacio A.J., et al. Toward sustainable energy: photocatalysis of Cr-doped TiO2:2. effect of defect disorder. Ionics, 2018, vol. 24, iss. 2, pp. 327--334. DOI: https://doi.org/10.1007/s11581-017-2370-9

[9] Ahmed M.A., Abou-Gamra Z.M., Salem A.M. Photocatalytic degradation of methylene blue dye over novel spherical mesoporous Cr2O3/TiO2 nanoparticles prepared by sol-gel using octadecylamine template. JECE, 2017, vol. 5, iss. 5, pp. 4251–4261. DOI: https://doi.org/10.1016/j.jece.2017.08.014

[10] Mukhlenov I.P., ed. Tekhnologiya katalizatorov [Catalysts technology]. Leningrad, Khimiya Publ., 1989.

[11] Odintsova N.A., Vishnevskaya T.A., Maltseva N.V., et al. Structured aluminohydroxide suspensions for obtaining spherical and thin-layer carriers catalysts. Izvestiya SPbGTI(TU) [Bull. SPbSTI (TU)], 2017, no. 39, pp. 11–18 (in Russ.).

[12] Alari Zh.-A., Zakhze S. Sfericheskie zerna korunda na osnove plavlenogo oksida alyuminiya, a takzhe sposob ikh polucheniya [Spherical grains of corundum based on fused alumina, as well as a method for producing them]. Patent 2378198 RF. Appl. 13.09.2006, publ. 10.01.2010 (in Russ.).

[13] Poluboyarov V.A., Korotaeva Z.A., Eunap O.A., et al. Sposob polucheniya sfericheskogo oksida alyuminiya [The method of obtaining spherical alumina]. Patent 2002103817 RF. Appl. 11.02.2002, publ. 11.20.2007 (in Russ.).

[14] Ismagilov Z.R., Shkrabina R.A., Koryabkina N.A. Aluminum oxide carriers: production, properties and applications in catalytic processes of environmental protection. Ekologiya. Seriya analiticheskikh obzorov mirovoy literatury [Ecology. Analytical Review Series on World Literature], 1998, no. 50, pp. 1–80 (in Russ.).

[15] Mahesh K.P.O., Kuo D.-H., Huang B.-R. Facile synthesis of heterostructured Ag-deposited SiO2@TiO2 composite spheres with enhanced catalytic activity towards the photodegradation of AB 1 dye. J. Mol. Catal. A Chem., 2015, vol. 396, pp. 290–296. DOI: https://doi.org/10.1016/j.molcata.2014.10.017

[16] Zelekew O.A., Kuo D.-H. A two-oxide nanodiode system made of double-layered p-type Ag2O@n-type TiO2 for rapid reduction of 4-nitrophenol. PCCP, 2016, no. 6, pp. 4405–4414. DOI: 10.1039/c5cp07320k

[17] Cao B., Li G., Li H. Hollow spherical RuO2@TiO2@Pt bifunctional photocatalyst for coupled H2 production and pollutant degradation. Appl. Catal. B, 2016, vol. 194, pp. 42--49. DOI: https://doi.org/10.1016/j.apcatb.2016.04.033

[18] Pimneva L.A., Nesterova E.L. X-ray-phases investigations, chemical compound of system of Y--Ba--Cu--O. Fundamentalnye issledovaniya [Fundamental Research], 2011, no. 4, pp. 150--153 (in Russ.).

[19] Pimneva L.A., Nesterova E.L. Optimization of process of receiving of cuprate of yttrium and barium by thermolysis of carboxyl cation (-exchange) resin. Sovremennye naukoemkie tekhnologii [Modern High Technologies], 2010, no. 1, pp. 21--26 (in Russ.).

[20] Shishmakov A.B., Koryakova O.V., Mikushina Yu.V., et al. Synthesis of spherical TiO2--SiO2 granules by joint hydrolysis of tetrabutoxytitanium and tetraethoxysilane, with KU-23 polymeric cation exchanger used as matrix. Russ. J. Appl. Chem., 2014, vol. 87, iss. 9, pp. 1219--1234. DOI: https://doi.org/10.1134/S1070427214090067

[21] Zharkova V., Bobkova L., Brichkov A., et al. Prospects for the use of the Tokem-250 carboxylic cation exchange resin. AIP Conf. Proc., 2017, vol. 1899, iss. 1, art. 020011. DOI: https://doi.org/10.1063/1.5009836

[22] Paukshtis E.A., Kozik V.V., Brichkov A.S., et al. Sposob polucheniya kompozitnogo kataliticheskogo materiala v vide sloistykh polykh sfer [Method of producing composite catalytic material in form of layered hollow spheres]. Patent 2608125 RF. Appl. 24.09.2015, publ. 13.01.2017 (in Russ.).

[23] Shamsutdinova A.N., Brichkov A.S., Paukshtis E.A., et al. Composite TiO2/fiberglass catalyst: synthesis and characterization. Catal. Commun., 2017, vol. 89, pp. 64--68. DOI: https://doi.org/10.1016/j.catcom.2016.10.018

[24] Korchagin V.I. Thermal studies on polymer compositions on the basis of butadiene-styrene rubbers and ion-exchange resin used. Khimiya i khimicheskaya tekhnologiya [Russian Journal of Chemistry and Chemical Technology], 2006, vol. 49, no. 11, pp. 59--63 (in Russ.).

[25] Pimneva L.A. Thermolysis of phosphoric acid cation exchanger with sorbed ions of yttrium, barium and copper. Fundamentalnye issledovaniya [Fundamental Research], 2014, no. 8, pp. 614--619 (in Russ.).