|

Use of Nanostructured Silver Substrates (Coatings) to Study the Content and Conformation of β-carotene

Авторы: Liu W., Shutova V.V., Maksimov G.V., Hao J., He Y. Опубликовано: 28.04.2022
Опубликовано в выпуске: #2(101)/2022  
DOI: 10.18698/1812-3368-2022-2-112-124

 
Раздел: Химия | Рубрика: Биоорганическая химия  
Ключевые слова: Raman spectroscopy, surface-enhanced Raman spectroscopy, blood, carotenoids

Abstract

Interest in the industrial production of plant and microalgal biomass for biofuels and bioproducts has stimulated studies on microalgal physiology and mechanisms of valuable biomolecules synthesis and accumulation in algal cells. One of the most investigated biomolecules for commercial application are neutral lipids and carotenoids. However, until now the mechanism of the influence of different ambient factors, including application of inductors, on biosynthesis and accumulation of these molecules is not well understood. Partially, the lack of such knowledge is due to restricted technique of investigation. Raman Spectroscopy is one of the advanced methods of cell physiology investigation, which can fill some gaps in our understanding of such processes. The current techniques used in the papers presented show the advantages and other essential specifics of the method applied to plants (most importantly, microalgae) and other species/objects. It was found that the use of a substrate allows to enhance the Raman signal when diluting the sample by 105--106 times, at a substance concentration of 10--9 mol/l. In SERS conditions (i.e., mixing silver colloids to blood sample) hem markers show up, while in normal Raman conditions resonance enhancement allows direct observation of β-carotene features. This highlights the versatility of Raman technique and the prospects for biology and clinical chemistry

This work was financially supported by the Russian Science Foundation (grant no. 19-79-30062) as well as the Interdisciplinary Scientific and Educational School of Lomonosov Moscow State University "Molecular Technologies of Living Systems and Synthetic Biology"

Please cite this article as:

Liu W., Shutova V.V., Maksimov G.V., et al. Use of nanostructured silver substrates (coatings) to study the content and conformation of β-carotene. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2022, no. 2 (101), pp. 112--124. DOI: https://doi.org/10.18698/1812-3368-2022-2-112-124

Литература

[1] Nikelshparg E.I., Grivennikova V.G., Baizhumanov A.A., et al. Probing lipids in biological membranes using SERS. Mendeleev Commun., 2019, vol. 29, iss. 6, pp. 635--637. DOI: https://doi.org/10.1016/j.mencom.2019.11.009

[2] Brazhe N.A., Evlyukhin A.B., Goodilin E.A., et al. Probing cytochrome c in living mitochondria with surface-enhanced Raman spectroscopy. Sci. Rep., 2015, vol. 5, no. 1, art. 13793. DOI: https://doi.org/10.1038/srep13793

[3] He S., Xie W., Zhang P., et al. Preliminary identification of unicellular algal genus by using combined confocal resonance Raman spectroscopy with PCA and DPLS analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, vol. 190, pp. 417--422. DOI: https://doi.org/10.1016/j.saa.2017.09.036

[4] Jaeger D., Pilger C., Hachmeister H., et al. Label-free in vivo analysis of intracellular lipid droplets in the oleaginous microalga Monoraphidium neglectum by coherent Raman scattering microscopy. Sci. Rep., 2016, vol. 6, art. 35340. DOI: https://doi.org/10.1038/srep35340

[5] Samek O., Jonas A., Pilat Z., et al. Raman microspectroscopy of individual algal cells: sensing unsaturation of storage lipids in vivo. Sensors, 2010, vol. 10, iss. 9, pp. 8635--8651. DOI: https://dx.doi.org/10.3390/s100908635

[6] Sharma S.K., Nelson D.R., Abdrabu R., et al. An integrative Raman microscopy-based workflow for rapid in situ analysis of microalgal lipid bodies. Biotechnol. Biofuels, 2015, vol. 8, art. 164. DOI: https://doi.org/10.1186/s13068-015-0349-1

[7] Schenk P.M., Thomas-Hall S.R., Stephens E., et al. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg. Res., 2008, vol. 1, no. 1, pp. 20--43. DOI: http://dx.doi.org/10.1007/s12155-008-9008-8

[8] Deng Y.-L., Juang Y.-J. Black silicon SERS substrate: effect of surface morphology on SERS detection and application of single algal cell analysis. Biosens. Bioelectron., 2014, vol. 53, pp. 37--42. DOI: https://doi.org/10.1016/j.bios.2013.09.032

[9] Alvarez-Puebla R.A., Liz-Marzan L.M. SERS-based diagnosis and biodetection. Small, 2010, vol. 6, iss. 5, pp. 604--610. DOI: https://doi.org/10.1002/smll.200901820

[10] Hudson S.D., Chumanov G. Bioanalytical applications of SERS (surface-enhanced Raman spectroscopy). Anal. Bioanal. Chem., 2009, vol. 394, no. 3, pp. 679--686. DOI: https://doi.org/10.1007/s00216-009-2756-2

[11] Fu S., Wang X., Wang T., et al. A sensitive and rapid bacterial antibiotic susceptibility test method by surface enhanced Raman spectroscopy. Braz. J. Microbiol., 2020, vol. 51, no. 3, pp. 875--881. DOI: http://dx.doi.org/10.1007/s42770-020-00282-5

[12] Wang T., Ji Y., Wang Y., et al. Quantitative dynamics of triacylglycerol accumulation in microalgae populations at single-cell resolution revealed by Raman microspectroscopy. Biotechnol. Biofuels, 2014, vol. 7, no. 1, art. 58. DOI: http://dx.doi.org/10.1186/1754-6834-7-58

[13] Osterrothova K., Culka A., Nemeckova K., et al. Analyzing carotenoids of snow algae by Raman microspectroscopy and high-performance liquid chromatography. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, vol. 212, pp. 262--271. DOI: https://doi.org/10.1016/j.saa.2019.01.013

[14] Cialla D., Marzohme R., et al. Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal. Bioanal. Chem., 2012, vol. 403, no. 1, pp. 27--54. DOI: https://doi.org/10.1007/s00216-011-5631-x

[15] Eggersdorfer M., Wyssc A. Carotenoids in human nutrition and health. Arch. Biochem. Biophys., 2018, vol. 652, pp. 18--26. DOI: https://doi.org/10.1016/j.abb.2018.06.001

[16] Jehlicka J., Edwards H.G.M., Osterrothova K., et al. Potential and limits of Raman spectroscopy for carotenoid detection in microorganisms: implications for astrobiology. Philos. Trans. A Math. Phys. Eng. Sci., 2014, vol. 372, art. 20140199. DOI: https://doi.org/10.1098/rsta.2014.0199

[17] Asiala S.M., Schultz Z.D. Surface enhanced Raman correlation spectroscopy of particles in solution. Anal. Chem., 2014, vol. 86, no. 5, pp. 2625--2632. DOI: https://doi.org/10.1021/ac403882h

[18] Huang Y.Y., Beal C.M., Cai W.W., et al. Micro-Raman spectroscopy of algae: composition analysis and fluorescence background behavior. Biotechnol. Bioeng., 2010, vol. 105, iss. 5, pp. 889--898. DOI: https://doi.org/10.1002/bit.22617

[19] Legesse F.B., Ruger J., Meyer T., et al. Investigation of microalgal carotenoid content using coherent anti-Stokes Raman scattering (CARS) microscopy and spontaneous Raman spectroscopy. Chemphyschem., 2018, vol. 19, iss. 9, pp. 1048--1055. DOI: https://doi.org/10.1002/cphc.201701298

[20] Subramanian B., Thibault M.-H., Djaoued Y., et al. Chromatographic, NMR and vibrational spectroscopic investigations of astaxanthin esters: application to "Astaxanthin-rich shrimp oil" obtained from processing of Nordic shrimps. Analyst., 2015, vol. 140, iss. 21, pp. 7423--7433. DOI: https://doi.org/10.1039/c5an01261a

[21] Cavonius L., Fink H., Kiskis J., et al. Imaging of lipids in microalgae with coherent anti-Stokes Raman scattering microscopy. Plant Physiol., 2015, vol. 167, iss. 3, pp. 603--616. DOI: https://doi.org/10.1104/pp.114.252197

[22] Zhang C., Liu P. The new face of the lipid droplet: lipid droplet proteins. Proteomics, Special Iss.: Reviews, 2019, vol. 10, art. e1700223. DOI: https://doi.org/10.1002/pmic.201700223