ВЛИЯНИЕ ИНЖЕКЦИОННЫХ ЭФФЕКТОВ НА ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ГЕТЕРОПЕРЕХОДОВ *p*Si-*n*Si_{1-x}Sn_x

Х.М. Мадаминов

khurmad@mail.ru

Андижанский государственный университет, Андижан, Республика Узбекистан

Аннотация

Ключевые слова

Исследована вольт-амперная характеристика структур *p*Si-*n*Si_{1-*x*}Sn_{*x*} в интервале значений температуры 293...393 К в целях выяснения роли инжекционных эффектов при формировании электрических свойств гетероструктур $pSi-nSi_{1-x}Sn_x$, полученных на основе твердого раствора $Si_{1-x}Sn_x$ ($0 \le x \le 0,04$). Установлено, что вольт-амперная характеристика таких гетероструктур состоит из двух характерных участков. Определено, что первый участок вольт-амперной характеристики хорошо описывается экспоненциальной зависимостью. За экспоненциальной зависимостью на всех вольт-амперных характеристиках наблюдаются независимые от температуры сублинейные участки. Показано, что указанные участки хорошо описываются в рамках теории эффекта инжекционного обеднения. По сублинейному участку вольт-амперной характеристики определено значение параметра а, с использованием которого можно рассчитать концентрацию глубоких примесей, ответственных за появление сублинейного участка. Доказано, что исследованную структуру можно рассматривать как переход $pSi-nSi_{1-x}Sn_x-n^+Si_{1-x}Sn_x$ (0 $\leq x \leq$ \leq 0,04) с высокоомным $nSi_{1-x}Sn_x$ -слоем. Полученные результаты позволили сделать следующие выводы: в твердом растворе $Si_{1-x}Sn_x$ ($0 \le x \le 0,04$) существенную роль при формировании электрофизических свойств играет рассеяние носителей заряда не только на сложных комплексах, но и на нановключениях; установлена эффективность использования эпитаксиальных пленок твердых растворов $Si_{1-x}Sn_x$ ($0 \le x \le$ ≤ 0,04), полученных на кремниевых подложках, как перспективных материалов при разработке диодов, функционирующих в режиме двойной инжекции

Твердый раствор, жидкофазная эпитаксия, диодная структура, вольтамперная характеристика, сублинейный участок, эффект инжекционного обеднения

Поступила 16.09.2020 Принята 12.11.2020 © Автор(ы), 2021

Работа выполнена в рамках проекта Государственной научно-технической программы Республики Узбекистан (проект № ОТ-Ф2-68)

Введение. Синтез новых полупроводниковых материалов и изучение физических свойств существующих является актуальной проблемой в микрои наноэлектронике. При решении указанной проблемы первичная задача — изучение новых кристаллически совершенных полупроводниковых твердых растворов с управляемыми составами и разработка на их основе новых полупроводниковых гетероструктур с улучшенными параметрами. В связи с этим определение оптимальных технологических условий синтеза гетероструктур может несколько упростить решение такой задачи.

При рассмотрении электрических свойств твердых растворов в качестве показателя последних используется вольт-амперная характеристика (ВАХ) *p*-*n*-перехода, полученная на основе этих соединений. Это связано с тем, что форма кривых ВАХ дает возможность исследователям говорить о тех или иных свойствах диодного перехода. При обычных методах получения *p*-*n*-переходов появляются различные поверхностные состояния, которые резко ухудшают электрические свойства изготовленных на их основе приборов. Как правило, для уменьшения концентрации поверхностных дефектов требуется получение *p*-*n*-перехода в едином технологическом цикле. Учитывая факторы, влияющие на качество исследуемых структур, для получения *p*-*n*-структур на основе твердого раствора Si_{1-x}Sn_x (0 $\leq x \leq$ 0,04) использовался метод жидкофазной эпитаксии [1].

Цель работы — определить влияние эффекта инжекционного обеднения на формирование электрических свойств гетероструктур $pSi-nSi_{1-x}Sn_x$, полученных на основе эпитаксиальной пленки твердого раствора замещения $Si_{1-x}Sn_x$ ($0 \le x \le 0,04$), выращенной из оловянного раствора-расплава методом жидкофазной эпитаксии [2].

В настоящее время существует достаточно мало работ, посвященных исследованию влияния эффекта инжекционного обеднения на электрофизические свойства твердых растворов замещения $Si_{1-x}Sn_x$ ($0 \le x \le 0,04$). Для p-i-n-структур, работающих в режиме двойной инжекции, впервые в [3] теоретически предсказан эффект инжекционного обеднения. В этом эффекте сочетаются два несовместимых между собой процесса: 1) инжекция (увеличение концентрации свободных носителей заряда на базе структуры); 2) обеднение (уменьшение концентрации свободных носителей заряда) [4].

Результаты анализа научных исследований показали, что эффект инжекционного обеднения наблюдался в многослойных гетероструктурах, полученных из твердых растворов, выращенных методом жидкофазной эпитаксии, например, *n*-Ge–*p*-(Ge₂)_{1–x–y}(GaAs)_x(ZnSe)_y [5], *p*-Si–*n*-(Si₂)_{1–x}(CdS)_x [6],

p-Si-n-(Si₂)_{1-x}(ZnSe)_x [7] и n-GaAs-p-(InSb)_{1-x}(Sn₂)_x [8], а также на структурах с гетеропереходом n-CdS/p-CdTe [9].

Теоретическая часть. Рассмотрим уравнение, описывающее так называемый амбиполярный перенос свободных носителей в базе $p-n-n^+$ -структуры. Уравнение получено математическим преобразованием отдельных соотношений для диффузии основных и неосновных носителей заряда [10]:

$$D_a \frac{d^2 p}{dx^2} - \nu_a \frac{dp}{dx} - U = 0.$$
⁽¹⁾

Здесь *D_a* — амбиполярный коэффициент диффузии,

$$D_a = D_p \frac{2b(\gamma+1)}{b(\gamma+b+1)},\tag{2}$$

 $b = \mu_n / \mu_p$ — безразмерная величина, определяемая как отношение подвижности электронов к подвижности дырок; D_p — коэффициент диффузии дырок; $\gamma = N_t / p_{1t}$ — фактор прилипания, N_t — концентрация центров прилипания, $p_{1t} = N_v \exp(-\Delta E_t / kT)$ — статистический фактор Шокли — Рида для уровня центров прилипания, $\Delta E_t = E_v - E_t$ — активационная энергия уровней центров прилипания, E_t , E_v — энергия, соответствующая уровню валентной зоны; v_a — амбиполярная скорость дрейфа; $U = p / \tau$ — скорость рекомбинации неравновесных носителей по статистике Шокли — Рида, p — концентрация свободных дырок, τ время жизни неосновных носителей заряда (в рассматриваемом случае дырок) [9].

Амбиполярная скорость дрейфа:

$$v_a = \frac{\mu_a}{(b\gamma + b + 1)p} \left\{ N_t - \left[\frac{dE}{dx} - p \frac{\partial}{\partial p} \left(\frac{\partial E}{\partial x} \right) \right] + N_t^+ \left(1 - p \frac{\partial}{\partial p} \right) \right\} E_J, \quad (3)$$

где $\mu_a = \frac{\mu_n \mu_p (n-p)}{\mu_n n - \mu_p p}$ — амбиполярная подвижность, n — концентрация свободных электронов; N_t^+ — концентрация центров прилипания, захвативших дырку; $E_J = \frac{J}{q \mu_p (b \gamma + b + 1) p}$ — напряжение электрического поля в базе.

Нетрудно убедиться, что слагаемое (пропорциональное N_t) в формуле (3) описывает омическую релаксацию остаточного объемного заря-

да, а второе слагаемое (пропорциональное dE/dx) — диэлектрическую релаксацию объемного заряда. Последнее слагаемое связано с так называемой токовой модуляцией заряда глубоких центров прилипания (т. е. дырок). Рассмотрим случай, когда токовая модуляция заряда глубоких центров прилипания является определяющей. Она реализуется, когда значения первых двух слагаемых в (3) малы по сравнению с третьим. Если глубокая примесь играет роль центров прилипания дырок, то формулу (3) можно преобразовать к виду [10]:

$$v_a = \frac{I}{q} \frac{\mu_n \mu_p N_t}{\left(\mu_n + \mu_p\right)^2 \left(p_{1t}^*\right)^2}.$$

Здесь

$$p_{1t}^* = p_{1t} + \frac{\mu_n}{\mu_n + \mu_p} N_t.$$

В условиях превалирующего влияния модуляции глубоких центров прилипания, фактор прилипания которых $\gamma = N_t / p_{1t} \gg 1$, с учетом $p < p_{1t}^*$ формулы (2) и (3) принимают вид: $v_a \approx aJD_a$ и $D_a \approx D_p$ (a — параметр; J — плотность тока). В этом случае уравнение (1) преобразуется к виду

$$\frac{d^2 p}{dx^2} - aJ \frac{dp}{dx} - \frac{p}{L_p^2} = 0,$$

$$a = \frac{1}{2qkT\mu_n N_t}$$
(4)

где

— параметр, зависящий только от подвижности основных носителей — электронов (μ_n) — и концентрации глубоких примесей N_t [7–9]; q — заряд; k — постоянная Больцмана; T — абсолютная температура; $L_p = \sqrt{D_p \tau_p}$ — диффузионная длина неосновных носителей (дырок).

В обычной $p-n-n^+$ -структуре значения концентрации свободных носителей заряда у p-n-перехода больше, чем у $n-n^+$ -перехода. Это означает, что градиент концентрации dp/dx < 0, т. е. концентрация впрыснутых носителей уменьшается от p-n к $n-n^+$ -переходу. В этом случае направления амбиполярной диффузии и амбиполярного дрейфа одинаковы [3]. При концентрации свободных носителей у $n-n^+$ -перехода большей, чем у p-n-перехода имеет место обратный случай. Когда реализуется условие dp/dx > 0, т. е. градиент концентрации свободных носителей будет возрастать от p-n к $n-n^+$ -переходу, амбиполярные диффузии и дрейф будут направлены противоположно. Если приложить к структуре создающее инжекционный ток напряжение, то на границах базы концентрация носителей будет увеличиваться с ростом тока, а в средней части уменьшаться [5].

При выполнении условия Jad > 2 и достаточно больших токах уравнение (4) имеет приближенное решение (рис. 1) [11]:

$$p \sim \exp(-aJd),\tag{5}$$

т. е. с увеличением тока концентрация убывает, *d* — толщина исследуемой структуры. В этом случае ВАХ диодных структур будут иметь вид

$$V \approx V_0 \exp(aJd).$$
 (6) _p

Здесь

$$V_0 = \frac{2bkTN_t}{q} \sqrt{\frac{qV_p^*(1+\gamma)}{(b\gamma+b+1)n_n J}},$$

 V_p^* — эффективная скорость утечки дырок через *i*-*n*-переход. Впервые J_1 решение (5) получено аналитически в [11], подтверждено численными *O* расчетами в [12]. Согласно (6), **Рис.** 1 структуры с эффектом инжекционного обеднения более восприимчивы к таким внешним воздействиям, как тепловое возбуждение, механическое напряжение, магнитные и радиационные поля.

Рис. 1. Качественная оценка по (5) изменения концентрации неравновесных носителей заряда по толщине базовой области *p*-*n*-*n*⁺-структуры при *J*₁ < *J*₂ < *J*₃

75

По результатам исследований [5] найдена зависимость протяженности сублинейного участка ВАХ от интенсивности процессов инжекции и аккумуляции в $p-n-n^+$ -структурах. Если аккумуляция в $p-n-n^+$ -структурах, определяющая p(d), интенсивнее инжекции, определяющей p(0), и выполняется условие $p(d) > p(0) \exp(2d/L)$, то протяженность градиента по плотности тока ΔJ сублинейного участка ВАХ находится как

$$\Delta J = \ln\left(\frac{p(d)}{p(0)}\right) \left\{ \frac{2}{ad} \sqrt{1 - \frac{4d^2}{L^2 \ln^2(p(d) / p(0))}} \right\},\tag{7}$$

а логарифм протяженности градиента напряжения сублинейного участка ВАХ — как

$$\ln(\Delta V) = \left\{ 1 + \sqrt{1 - \frac{4d^2}{L^2 \ln^2(p(d) / p(0))}} \right\} \ln\left(\frac{p(d)}{p(0)}\right).$$

В случае выполнения условия $p(d) < p(0) \exp(2d/L)$ наблюдаются другие виды ВАХ, в частности, зависимости типа $J \sim V^m$, $0 < m \le 1$, и экспоненциальная зависимость на ВАХ [5].

Рассмотрим основное условие для реализации эффекта инжекционного обеднения — изменение знака градиента концентрации свободных носителей. Для этого необходимо реализовать случай, при котором образуется «идеальный» *i*-*n*-переход (поступает много электронов), и «неидеальный» *p*-*i*-переход (поступает мало дырок). Это можно реализовать не только технологически, но и в процессе эксплуатации прибора. Согласно [11], при идеальных контактах наблюдаются линейные зависимости $p(0) \sim J$ и $p(d) \sim J$, а при неидеальных эти зависимости ослабевают и принимают вид $p(0) \sim \sqrt{J}$, $p(d) \sim J$. Если считать *p*-*i*-переход «неидеальным» ($p(0) \sim \sqrt{J}$), а в то же время *i*-*n*-переход останется «идеальным» ($p(d) \sim J$), то значения концентрации носителей у *i*-*n*-перехода могут стать больше, чем у *p*-*i*-перехода. Знак градиента dp/dx станет положительным, и таким образом реализуется условие для эффекта инжекционного обеднения [3].

Подготовка образцов, экспериментальные результаты. Для проведения исследований изготовлены структуры $pSi-nSi_{1-x}Sn_x$ ($0 \le x \le 0,04$) методом жидкофазной эпитаксии твердого раствора $Si_{1-x}Sn_x$ *n*-типа проводимости с удельным сопротивлением $\rho \approx 0,8$ Ом · см на кремниевых подложках, *p*-типа проводимости с удельным сопротивлением $\rho \approx 1,0$ Ом · см. Вакуумным напылением серебра при рабочем давлении около 10^{-5} торр получены омические контакты, сплошные с тыльной стороны и четырехугольные площадью 12 мм² со стороны эпитаксиального слоя.

Для установления механизмов переноса тока в структурах $pSi-nSi_{1-x}Sn_x$ проведены эксперименты по определению ВАХ при различных значениях температуры (рис. 2, *a*). Для этого образцы помещали и механически плотно закрепляли на металлическом криостате, в котором значение остаточного давления снижено примерно до 3...10 торр. К исследуемым структурам $pSi-nSi_{1-x}Sn_x$ с помощью блока питания Б5-45А приложили напряжение, значения которого фиксировались вольтметром В7-9. Для наблюдения

Рис. 2. Прямые (*a*) и сублинейные (*б*) участки ВАХ гетероструктур *p*Si–*n*Si_{1-*x*}Sn_{*x*} в полулогарифмическом масштабе при значениях температуры 293 (*1*), 313 (*2*), 333 (*3*), 353 (*4*), 373 (5) и 393 К (*6*)

силы тока, проходящего через исследуемый образец, использовали многофункциональный прибор Щ-300.

Результаты экспериментов показали, что прямая ветвь ВАХ структур $pSi-nSi_{1-x}Sn_x$ при значениях температуры 293...393 К состоит из двух специфических участков (см. рис. 2, *a*). Первый из этих участков ВАХ в диапазоне напряжений 0...0,5 В описывается зависимостью вида [13]:

$$I = I_0 \exp\left(\frac{eV}{ckT}\right),\tag{8}$$

где I_0 — предэкспоненциальный множитель; e — заряд электрона; V — подаваемое напряжение к структуре; c — показатель, вычисленный по экспоненциальному участку ВАХ при различных значениях температуры (табл. 1). Значение показателя c уменьшается при повышении температуры от 293 до 353 К.

Таблица 1

77

<i>Т</i> , К	293	313	333	353	373	393
С	2,78	2,77	2,66	2,62	2,85	2,93
<i>I</i> ₀ , мкА	7,32	11,25	19,64	31,43	51,07	84,11
$\mu_p \tau_p$, 10 ⁻⁵ , cm ² /B	3,62	3,41	3,62	3,57	2,66	2,37
ρ, 10 ⁵ , Ом · см	5,74	3,95	2,32	1,50	1,06	0,69

Значения параметров структур $pSi-nSi_{1-x}Sn_x$

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2021. № 2

Используя экспериментальные значения подвижности основных носителей (электронов)^{*} $\mu_n \approx 538 \text{ см}^2/(\text{B} \cdot \text{c})$ и толщины базы $n\text{Si}_{1-x}\text{Sn}_x$ $d \approx 45$ мкм, а также значение показателя экспоненты *c*, рассчитанное из (8), по формуле

$$c(b+1) = 2b + ch\left(\frac{d}{L_p}\right) + 1$$
(9)

можно вычислить отношение $d/L_p = 2,1$ ($d/L_p > 1$). Далее можно найти значение L_p при температуре 293 К (b = 3, как и в [14]): $L_p \approx 9,57$ мкм.

Полученные результаты позволили определить произведение подвижности и времени жизни неосновных носителей: $\mu_p \tau_p = q L_p^2 / (kT)$ (см. табл. 1). Согласно данным, приведенным в табл. 1, значения $\mu_p \tau_p$ в интервале 293...353 К слабо зависят от температуры, а в интервале 353...393 К наблюдается уменьшение значения произведение $\mu_p \tau_p$.

Предэкспоненциальный множитель I_0 в формуле (8) имеет вид [9]:

$$I_0 = \frac{kT}{q} \frac{Sb \operatorname{ch} \left(d/L_p \right)}{2(b+1)L_p \rho \operatorname{tg} \left(d/(2L_p) \right)},\tag{10}$$

где ρ — удельное сопротивление переходного слоя, расположенного между кремниевой (Si) подложкой и эпитаксиальным слоем твердого раствора Si_{1-x}Sn_x (т. е. *p*-*n*-перехода). Значение предэкспоненциального множителя, определенное по ВАХ, при комнатной температуре равнялось 7,32 мкА. С использованием (10) и экспериментальных точек на кривых ВАХ при комнатной температуре вычислено значение удельного сопротивления переходного слоя между подложкой и эпитаксиальной пленкой: 5,74 · 10⁵ Ом · см. С увеличением температуры удельное сопротивление переходного слоя между подложкой и эпитаксиальной пленкой уменьшается.

За экспоненциальной зависимостью ВАХ в исследованном диапазоне значений температуры наблюдается участок ВАХ, где ток слабо меняется с ростом приложенного напряжения (рис. 2, δ). Этот участок ВАХ может быть хорошо описан в рамках изложенной выше теории эффекта инжекционного обеднения (6). Используя (6), можно определить значение параметра *a* непосредственно по сублинейному участку ВАХ [3]:

78

^{*} Определено методом Холла при комнатной температуре.

$$a = \frac{S \ln (V_1 / V_2)}{(I_1 - I_2) d}$$

где I_1 , I_2 — значения тока при напряжениях V_1 , V_2 в последовательных точках сублинейного участка ВАХ. Поскольку коэффициент диффузии носителей заряда зависит только от температуры и подвижности основных носителей, определив параметр *a* по соотношению (4), можно найти произведение подвижности основных носителей и концентрации глубоких примесей $\mu_n N_t$ (табл. 2) [10]. Полученное значение *a* позволило из формулы (4) найти значение концентрации глубоких примесей, ответственное за появление сублинейного участка: $N_t = 5,3 \cdot 10^{12}$ см⁻³ (при комнатной температуре).

Таблица 2

Значение параметра *а* и произведения подвижности основных носителей и концентрации глубоких примесей µ_n N_t в зависимости от температуры

Параметр	Т, К						
Tupamerp	293	313	333	353	373	393	
<i>а</i> , 10 ³ , см/А	6,58	5,49	3,79	3,22	2,82	3,45	
$\mu_n N_t$, 10 ¹⁶ , (B · cm · c) ⁻¹	1,84	2,11	2,87	3,20	3,02	3,10	

Произведение $\mu_n N_t$ основных носителей в твердом растворе $n \text{Si}_{1-x} \text{Sn}_x$ увеличивается с возрастанием температуры. По-видимому, это позволяет заключить, что в таком твердом растворе большую роль в зависимости подвижности от температуры играет рассеяние носителей на глубоких примесях. Результаты рентгенодифракционного анализа эпитаксиальных слоев твердых растворов $Si_{1-x}Sn_x$ и его кремниевой подложки, выращенной методом жидкофазной эпитаксии, приведены в [15]. Установлено, что молекулы олова могут не только частично замещать молекулы кремния, но и сегрегироваться в дефектоспособных местах — между блоками, на межфазовых границах, образуя в этих местах нановключения олова. Учитывая результаты рентгеноструктурных исследований, можно предположить, что в твердом растворе $Si_{1-x}Sn_x$ примесные атомы олова, замещая в узлах кристаллической решетки атомы кремния, будут вести себя как нейтральный атом замещения. Возможно, находясь на межфазовых границах, они будут вести себя как обычная глубокая примесь и будут ответственны за наблюдаемую сублинейную ВАХ.

Следует отметить, что удельное сопротивление эпитаксиального слоя, определенное методом Холла, составляет 0,8 Ом · см, однако все полученные характеристики свидетельствуют о том, что между эпитаксиальной пленкой

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2021. № 2

и подложкой образуется слой с другими характеристиками, иначе в таких ВАХ не наблюдается и, следовательно, не может наблюдаться экспоненциальная зависимость (7). Таким образом, исследованную структуру можно рассматривать как переход $pSi-nSi_{1-x}Sn_x-n^+Si_{1-x}Sn_x$ ($0 \le x \le 0,04$) с высокоомным $nSi_{1-x}Sn_x$ -слоем (рис. 3).

Рис. 3. Схема структуры $pSi-nSi_{1-x}Sn_x-n^+Si_{1-x}Sn_x$ ($0 \le x \le 0,04$):

1 — омические токосъемные контакты; 2 — слой pSi (подложка); 3 — область объемного заряда инжектирующего перехода pSi-nSi_{1-x}Sn_x (0 $\leq x \leq 0,04$); 4 — высокоомный эпитаксиальный слой твердого раствора pSi-nSi_{1-x}Sn_x (0 $\leq x \leq 0,04$); 5 — область объемного заряда инжектирующего перехода nSi_{1-x}Sn_x-n⁺Si_{1-x}Sn_x (0 $\leq x \leq 0,04$); 6 — низкоомный эпитаксиальный слой твердого раствора n⁺Si_{1-x}Sn_x (0 $\leq x \leq 0,04$); 6 — низкоомный

Заключение. Полученные экспериментальные и расчетные результаты позволяют сделать вывод, что в твердом растворе $Si_{1-x}Sn_x$ ($0 \le x \le 0,04$) существенную роль в механизме подвижности играет рассеяние носителей заряда не только на сложных комплексах, но и на нановключениях.

Эпитаксиальные пленки твердых растворов Si_{1-x}Sn_x ($0 \le x \le 0,04$) на кремниевых подложках полагаются активными полупроводниковыми материалами. Полученные на их основе структуры и описание механизмов различных электрофизических процессов, наблюдаемых в них, как в теоретическом, так и в практическом аспекте являются актуальными для полупроводникового материаловедения [1]. Можно предположить, что исследуемые в работе эпитаксиальные пленки твердых растворов Si_{1-x}Sn_x ($0 \le x \le 0,04$) могут быть перспективными материалами для диодов, работающих в режиме двойной инжекции.

Благодарности

Автор выражает благодарность научному консультанту, академику Академии наук Республики Узбекистан С.З. Зайнабидинову, профессору А.Ю. Лейдерман и д-ру физ.-мат. наук Ш.Н. Усмонову за помощь в работе, профессору А.С. Саидову — за предоставление исследуемых образцов.

ЛИТЕРАТУРА

[1] Зайнабидинов С.З., Мадаминов Х.М. Механизм токопрохождения в полупроводниковых p-Si-n-(Si₂)_{1-x}(CdS)_x структурах. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2020, № 4 (91), с. 58–72.

DOI: http://dx.doi.org/10.18698/1812-3368-2020-4-58-72

[2] Андреев В.М., Долгинов Л.М., Третьяков Д.Н. Жидкостная эпитаксия в технологии полупроводниковых приборов. М., Сов. радио, 1975.

[3] Leiderman A.Yu., Karageorgy-Alkalaev P.M. On the theory of sublinear current-voltage characteristics of semiconductor structures. *Solid State Commun.*, 1978, vol. 25, iss. 10, pp. 781–783. DOI: https://doi.org/10.1016/0038-1098(78)90239-9

[4] Usmonov Sh.N., Saidov A.S., Leiderman A.Yu. Effect of injection depletion in p-n heterostructures based on solid solutions $(Si_2)_{1-x-y}(Ge_2)_x(GaAs)_y$, $(Si_2)_{1-x}(CdS)_x$, $(InSb)_{1-x}(Sn_2)_x$, and $CdTe_{1-x}S_x$. *Phys. Solid State*, 2014, vol. 56, no. 12, pp. 2401–2407. DOI: https://doi.org/10.1134/S1063783414120348

[5] Зайнабидинов С.З., Лейдерман А.Ю., Каланов М.У. и др. Особенности электрофизических свойств *p*−*n*-структур на основе непрерывного твердого раствора *n*-Ge−*p*-(Ge₂)_{1-x-y}(GaAs)_x(ZnSe)_y. Узбекский физический журнал, 2015, № 17, с. 301–305.

[6] Saidov A.S., Leyderman A.Yu., Usmonov Sh.N., et al. *I–V* characteristic of p-n structures based on a continuous solid solutions $(Si_2)_{1-x}(CdS)_x$. *Semiconductors*, 2009, vol. 43, no. 4, pp. 416–418. DOI: https://doi.org/10.1134/S1063782609040022

[7] Saidov A.S., Leyderman A.Yu., Usmonov Sh.N., et al. Effect of injection depletion in p-Si-n-(Si₂)_{1-x}(ZnSe)_x ($0 \le x \le 0.01$) heterostructure. *Semiconductors*, 2018, vol. 52, no. 9, pp. 1188–1192. DOI: https://doi.org/10.1134/S1063782618090142

[8] Saidov A.S., Saidov M.S., Usmonov Sh.N., et al. Growth of $(InSb)_{1-x}(Sn_2)_x$ films on GaAs substrates by liquid-phase epitaxy. *Semiconductors*, 2010, vol. 44, no. 7, pp. 938–945. DOI: https://doi.org/10.1134/S1063782610070183

[9] Usmonov Sh.N., Mirsagatov S.A., Leyderman A.Yu. Study of the current-voltage characteristic of the *n*-CdS/*p*-CdTe heterostructure depending on temperature. *Semiconductors*, 2010, vol. 44, no. 3, pp. 313–317.

DOI: https://doi.org/10.1134/S1063782610030073

[10] Саидов А.С., Амонов К.А., Лейдерман А.Ю. Исследование зависимости вольтамперной характеристики p-Si-n-(Si₂)_{1-x-y}(Ge₂)_x(ZnSe)_y-структур от температуры. *Comp. Nanotechnol.*, 2019, № 3, с. 16–21.

DOI: https://doi.org/10.33693/2313-223X-2019-6-3-16-21

[11] Адирович Э.И., Карагеоргий-Алкалаев П.М., Лейдерман А.Ю. Токи двойной инжекции в полупроводниках. М., Сов. радио, 1978.

[12] Li S.S. Semiconductor physical electronics. New York, NY, Springer, 2006.DOI: https://doi.org/10.1007/0-387-37766-2

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2021. № 2

[13] Зайнабидинов С.З., Мадаминов Х.М. Влияние рекомбинационных процессов на механизм токопрохождения в $pSi-nSi_{1-x}Sn_x$ ($0 \le x \le 0,04$) структурах. Петербургский журнал электроники, 2017, № 4, с. 8–13.

[14] Мейлихов Е.З., Лазарев С.Д. Электрофизические свойства полупроводников. М., Атоминформ, 1987.

[15] Saidov A.S., Usmonov Sh.N., Kalanov M., et al. Structure and photoelectric properties of $Si_{1-x}Sn_x$ epilayers. *Tech. Phys. Lett.*, 2010, vol. 36, no. 9, pp. 827–829. DOI: https://doi.org/10.1134/S1063785010090154

Мадаминов Хуршиджон Мухамедович — канд. физ.-мат. наук, доцент кафедры «Физика» Андижанского государственного университета (Республика Узбекистан, 170100, Андижан, ул. Университетская, д. 129).

Просьба ссылаться на эту статью следующим образом:

Мадаминов Х.М. Влияние инжекционных эффектов на электрические свойства гетеропереходов *pSi−nSi_{1-x}Sn_x*. *Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки*, 2021, № 2 (95), с. 71–84. DOI: https://doi.org/10.18698/1812-3368-2021-2-71-84

EFFECT OF INJECTION PHENOMENA ON ELECTRICAL PROPERTIES OF *p*Si–*n*Si_{1-x}Sn_x HETEROJUNCTIONS

Kh.M. Madaminov

khurmad@mail.ru

Andijan State University, Andijan, Republic of Uzbekistan

Abstract

Keywords

We studied the current-voltage characteristic of $pSi-nSi_{1-x}Sn_x$ structures in the temperature range of 293–393 K so as to find out the role of injection phenomena during electrical property formation in $pSi-nSi_{1-x}Sn_x$ heterojunctions derived from the $Si_{1-x}Sn_x$ ($0 \le x \le 0.04$) solid solution. We established that the current-voltage characteristic of such heterojunctions consists of two typical segments. We determined that an exponential function describes the first current-voltage characteristic segment well. In all current-voltage characteristics the exponential curve is followed by sub-linear segments that do not depend on temperature. We show that the theory of injection depletion effect describes these segments well. We used the sublinear segment of the current-voltage characteristic to deter-

Solid solution, liquid-phase epitaxy, diode configuration, current-voltage characteristic, sublinear segment, injection depletion effect Влияние инжекционных эффектов на электрические свойства гетеропереходов $pSi-nSi_{1-x}Sn_x$

mine the value of the parameter <i>a</i> , which can be em-							
ployed to calculate deep level impurity concentration							
leading to the appearance of the sublinear segment. We							
prove that the structure under investigation may be con-							
sidered to be a $pSi-nSi_{1-x}Sn_x-n^+Si_{1-x}Sn_x$ ($0 \le x \le 0.04$)							
junction with a high-resistance $nSi_{1-x}Sn_x$ layer. The anal-							
ysis results make it possible to conclude that charge car-							
rier dissipation on both complex aggregates and							
nanoinclusions plays a significant role in forming elec-							
trophysical properties in the $Si_{1-x}Sn_x$ ($0 \le x \le 0.04$) solid							
solution and that epitaxial films of $Si_{1-x}Sn_x$ ($0 \le x \le 0.04$)							
solid solutions derived on silicon substrates are efficient	Received 16.09.2020						
promising materials for developing diodes operating	Accepted 12.11.2020						
under double injection	© Author(s), 2021						

The study was conducted as part of the project of the State Science and Engineering Program of the Republic of Uzbekistan (project no. OT-F2-68)

REFERENCES

[1] Zaynabidinov S.Z., Madaminov Kh.M. Charge transport mechanism in *p*-Si-n-(Si₂)_{1-x}(CdS)_x semiconductor structures. *Herald of the Bauman Moscow State Technical University, Series Natural Sciences*, 2020, no. 4 (91), pp. 58–72 (in Russ.). DOI: http://dx.doi.org/10.18698/1812-3368-2020-4-58-72

[2] Andreev V.M., Dolginov L.M., Tretyakov D.N. Zhidkostnaya epitaksiya v technologii poluprovodnikovykh priborov [Liquid epitaxy in technology of semiconductor devices]. Moscow, Sovetskoe radio Publ., 1975.

[3] Leiderman A.Yu., Karageorgy-Alkalaev P.M. On the theory of sublinear current-voltage characteristics of semiconductor structures. *Solid State Commun.*, 1978, vol. 25, iss. 10, pp. 781–783. DOI: https://doi.org/10.1016/0038-1098(78)90239-9

[4] Usmonov Sh.N., Saidov A.S., Leiderman A.Yu. Effect of injection depletion in p-n heterostructures based on solid solutions $(Si_2)_{1-x-y}(Ge_2)_x(GaAs)_y$, $(Si_2)_{1-x}(CdS)_x$, $(InSb)_{1-x}(Sn_2)_x$, and $CdTe_{1-x}S_x$. *Phys. Solid State*, 2014, vol. 56, no. 12, pp. 2401–2407. DOI: https://doi.org/10.1134/S1063783414120348

[5] Zaynabidinov S.Z., Leyderman A.Yu., Kalanov M.U., et al. Electrophysical properties features of p-n structures based on n-Ge–p-(Ge₂)_{1-x-y}(GaAs)_x(ZnSe)_y continuous solid solution. *Uzbekskiy fizicheskiy zhurnal*, 2015, no. 17, pp. 301–305 (in Russ.).

[6] Saidov A.S., Leyderman A.Yu., Usmonov Sh.N., et al. *I–V* characteristic of p-n structures based on a continuous solid solutions $(Si_2)_{1-x}(CdS)_x$. *Semiconductors*, 2009, vol. 43, no. 4, pp. 416–418. DOI: https://doi.org/10.1134/S1063782609040022

[7] Saidov A.S., Leyderman A.Yu., Usmonov Sh.N., et al. Effect of injection depletion in p-Si-n-(Si₂)_{1-x}(ZnSe)_x (0 \le x \le 0.01) heterostructure. *Semiconductors*, 2018, vol. 52, no. 9, pp. 1188–1192. DOI: https://doi.org/10.1134/S1063782618090142

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2021. № 2 83

[8] Saidov A.S., Saidov M.S., Usmonov Sh.N., et al. Growth of $(InSb)_{1-x}(Sn_2)_x$ films on GaAs substrates by liquid-phase epitaxy. *Semiconductors*, 2010, vol. 44, no. 7, pp. 938–945. DOI: https://doi.org/10.1134/S1063782610070183

[9] Usmonov Sh.N., Mirsagatov S.A., Leyderman A.Yu. Study of the current-voltage characteristic of the *n*-CdS/*p*-CdTe heterostructure depending on temperature. *Semiconductors*, 2010, vol. 44, no. 3, pp. 313–317.

DOI: https://doi.org/10.1134/S1063782610030073

[10] Saidov A.S., Amonov K.A., Leyderman A.Yu. Research of the dependence of current-voltage characteristics p-Si-n-(Si₂)_{1-x-y}(Ge₂)_x(ZnSe)_y-structures on temperature. *Comp. Nanotechnol.*, 2019, no. 3, pp. 16–21 (in Russ.). DOI: https://doi.org/10.33693/2313-223X-2019-6-3-16-21</sub>

[11] Adirovich E.I., Karageorgiy-Alkalaev P.M., Leyderman A.Yu. Toki dvoynoy inzhektsii v poluprovodnikakh [Dual injection currents in semiconductors]. Moscow, Sovetskoe radio Publ., 1978.

[12] Li S.S. Semiconductor physical electronics. New York, NY, Springer, 2006. DOI: https://doi.org/10.1007/0-387-37766-2

[13] Zaynabidinov S.Z., Madaminov Kh.M. The impact of recombination processes on the current-carryng process in $pSi-nSi_{1-x}Sn_x$ ($0 \le x \le 0.04$) structures. *Peterburgskiy zhurnal elektroniki* [Petersburg Electronics Journal], 2017, no. 4, pp. 8–13 (in Russ.).

[14] Meylikhov E.Z., Lazarev S.D. Elektrofizicheskie svoystva poluprovodnikov [Electrophysical properties of semiconductors]. Moscow, Atominform Publ., 1987.

[15] Saidov A.S., Usmonov Sh.N., Kalanov M., et al. Structure and photoelectric properties of Si_{1-x}Sn_x epilayers. *Tech. Phys. Lett.*, 2010, vol. 36, no. 9, pp. 827–829. DOI: https://doi.org/10.1134/S1063785010090154

Madaminov Kh.M. — Cand. Sc. (Phys.-Math.), Assoc. Professor, Department of Physics, Andijan State University (Universitetskaya ul. 129, Andijan, 170100 Republic of Uzbekistan).

Please cite this article in English as:

84

Madaminov Kh.M. Effect of injection phenomena on electrical properties of $pSi-nSi_{1-x}Sn_x$ heterojunctions. *Herald of the Bauman Moscow State Technical University, Series Natural Sciences*, 2021, no. 2 (95), pp. 71–84 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2021-2-71-84