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Abstract Keywords 
The problem was considered of estimating reliability 
for a complex system model with element duplication 
of various subsystems and ensuring possibility of addi-
tional redundancy in a more flexible dynamic (or ‘slid-
ing’) mode in each of the subsystems, which signifi-
cantly increases reliability of the system in general. For 
the system considered, general model and analytical 
expressions were obtained in regard to the main relia-
bility indicators, i.e., probability of the system failure-
free operation (reliability function) for a given time 
and mean time of the system failure-free operation. 
On the basis of these analytical expressions, the lower 
confidence limit for the system reliability function was 
found in a situation, where the element reliability pa-
rameters were unknown, and only results of testing the 
system elements for reliability were provided. It was 
shown that the system resource function was convex in 
the reliability parameters vector of the system separate 
elements various types. Based on this, the lower confi-
dence boundary construction for the system reliability 
function was reduced to the problem of finding the 
convex function extremum on a confidence set in the 
system element parameter space. In this case, labor 
consumption of the corresponding computational 
procedure increases linearly with an increase in the 
problem dimension. Numerical examples of calculating 
the lower confidence boundary for the system reliabil-
ity function were provided 
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Introduction. Estimation of the complex system reliability indicators based on 
test results of their separate components (elements, subsystems) is one of the 
urgent problems in the mathematical reliability theory. Currently, methods of 
interval estimation with a given validity level of the complex system reliability 
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indicators based on results of their elements testing were elaborated mainly for 
classic sequential and sequential-parallel structural reliability schemes (see, for 
example, [1–10], etc.). Similar methods for solving the given problem for 
sequential-parallel models with independent (unlimited) recovery and loaded 
redundancy of elements are proposed in [11, 12]. Structures of the k type of n 
with redundancy in the loaded mode, which are some kind of natural 
generalization of the classic parallel structures, are considered in [13–15]. 
Further, a more general model of the system will be presented, where 
redundancy of elements is possible in its each subsystem both in the normal 
loaded mode, and with additional redundancy in a more flexible dynamic mode 
(when additional redundant elements are not rigidly connected to one or 
another main element of the original system). This makes it possible to 
significantly increase the system reliability (see examples). Such a model 
contains in a particular case sequential-parallel schemes with duplication (in the 
loaded mode) of the system elements. Exact analytical formulas were obtained 
expressing dependence of the system reliability function on the element 
reliability parameters. For the general model under consideration, solution to 
the problem often arising in engineering practice was proposed to construct a 
lower confidence boundary for the system reliability function based on results of 
testing its individual elements, which significantly expands the scope of existing 
methods for solving this problem. 

Let us consider a system with sequential connection of the m different  
subsystems, where the i-th subsystem consists of the l sequentially connected 
elements with reliability function ( ) exp( ).i iP t t  Each element is duplicated 
by a single-type element with the same reliability function ( ) exp( ),i iP t t  
where 0i  is the failure rate parameter for the i-th type elements (i-th subsys-
tem), 1, ..., .i m  Thus, the i-th subsystem appears to be a sequential connection 
of the il  subsystems with duplication of the main element with reliability func-
tion 21  1 )[ ] ,(iP t  1, ...,i m  (redundancy mode is assumed to be loaded).  
In addition, each i-th subsystem is provided additionally with ir  reserve ele-
ments of the i-th type staying in the dynamic redundancy mode, when each  
of these ir  reserve elements is not rigidly attached to one or another fixed main 
element of the i-th subsystem. And in case of any element failure, it is replaced 
in the i-th subsystem by one of the additional ir  backup elements, 1, ..., .i m  

Under the assumption that failures of the system various elements occur 
independently of each other, probability of failure-free operation (reliability 
function) of the system over the time interval (0, )t  is having the following 
form: 
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=1

( , ) = ( , , ),
m

sys i i i
i

P t H l r t  (1) 

where ( , , )i i iH l r t  is the i-th subsystem reliability function, =1, ..., ;i m  
1 2= ( , , ..., )m  is the reliability parameters vector of system elements.  

In many cases, exact values of the 1 2= ( , , ..., )m  element parameters are 
unknown, and only the results of testing the system elements for reliability are 
provided, and it is required to construct a lower confidence boundary for the 
system reliability function ( , ).sysP t  

System reliability function calculation. Let us consider calculation of the 
system reliability function (1) under assumption that the 1 2= ( , , ..., )m  
reliability parameters are known. Let us denote by ( , , )H l r t  the reliability 
function for a single separate subsystem of the above type consisting of l 
subsystems with duplication and of r additional redundant elements (in the 
sliding redundancy mode). Then the  failure-free operation time of such a 
subsystem is a convolution of two independent random variables: 

 1 2= ,  (2) 

where 1  is the failure-free operation time of a system of the (2 1)l  type from 
(2 ),l r  i.e., a system that consists of (2 )l r  elements with the ( ) = exp( )P t t  
reliability function is faultless, if at least two (2 1)l  of them are serviceable. For 
the 1  random variable, corresponding reliability function has the following 
form [1]: 

 1 1
=

( ) = {( ) > } = (1 ) ,
n j j n jn

j k
P t P t C p p  (3) 

where = 2 ;n l r  = 2 1;k l  = exp( ).p t  Hence, for this model 

 1
=

( ) = (1 exp( )) .
n j j t n jn

j k
P t C e t  (4) 

The 2  random variable is the failure-free time for initial structure of the l 
sequentially connected parallel subsystems of two elements (excluding the 
additional r redundant elements) with the reliability function 2( ) = { > } =P t P t  

2{1 [1 exp( ) ]} .lt   In accordance with (2), the ( , , )H l r t  system reliability 
function is having the following form: 

 1 2 1
0

( , , ) = ( ) ( ) ( ).
t

H l r t f u P t u du P t  (5) 
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Here 1 1( ) = ( )f u P u  is distribution density of the 1  random variable. After 
simple transformations from (3) and (4), it follows: 

 1
1( ) = exp( )[1 exp( )] ,k rnf t kC k t t  (6) 

where = 2 ;n l r  = 2 1;k l  1;l  1.r  Based on the expression for the system 
reliability function (5) and formula (6), the following is found: 

 
1 2

0

1

0

= ( ) ( ) =

(1 exp( )) (2 exp( ( )) exp( 2 ( ))) .

t
t

t
k k u r ln

I f u P t u du

kC e u t u t u du
 

After simple transformations: 

 1 1

0
= 2 exp( ) (exp( )) (1 exp( )) ( , ) ,

t
n l l rt lkI kC l t u u g t u du  (7) 

where 

 1( , ) = 1 exp( ( )) .
2

l

lg t u t u  (8) 

Considering that 

 
1

1
1

= 0
(1 exp( )) = ( 1) exp( ),

r
jr j
r

j
u C j u  

it follows from (7) and (8): 

 
1

1
= 0 0

= exp( ) ( 1) ( , ) .
r t

jk jt n lr
j

I kC l t C h t u du  (9) 

Here ( , ) = ( , )exp[ ( 1) ].l lh t u g t u l j u  
In accordance with (8), the following expression satisfies function ( , )lg t u : 

 
= 0

1( , ) = ( 1) exp( ( )).
2

il
i il l

i
g t u C i t u  (10) 

Further, it is found from (5)–(10) that the ( , , )H l r t  system reliability function 
for the model under consideration is having the following form: 

 
1

1
1

= 0 = 0

( 1) ( )( 1)
( , , ) = ( ) 2 ,

12

jji il r ijrlk ln i
i j

C B tCH l r t P t kC
l i j

 (11) 

where ( )ijB t are functions, 
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 ( ) = exp( ( ) ) exp( (2 1) ),ijB t l i t l j t  (12) 

1;l  1;r = 2 1;k l  = 2 .n l r  For the given model and based on (11), appro-
priate expression could be found for the system failure-free operation mean 
time: 

 
0

( , , ) ( , , ) .sys sys l r H l r t dt  

For the k type structure of n with the 1( )P t  reliability function, the average 
failure-free time is determined by the following expression [1, 3]: 

 1 1
=0

1 1= ( ) = .
n

j k
P t dt

j
 (13) 

According to (12): 

 
0

1( ) = .
( )(2 1)ij

l j iB t dt
l i l i

 (14) 

It is found for the model under consideration from (11)–(14) that the average 
failure-free operation time is determined as 

 
1 1

0 0

( 1)( 1)1( , , ) 2 ,
(2 1)2 ( )

jjri ik l rlk lsys n i
j k i j

CCl r kC
i l jl i

 

where = 2 1;k l  = 2 .n l r  
Lower confidence boundary construction for the system reliability 

function. Let us consider the problem of the system reliability estimation in case, 
when the 1=( , ..., )m  elements reliability parameters are unknown and are 
determined by results of their testing. Further, we assume that testing elements of 
the i-th type system were carried out according to the standard plans of the 
[ ]i iN BT  type in designations given in [1], i.e., iN  elements of the i-th type were 
exposed to testing (with restoration of the failed elements) over the iT  time; as a 
result, id  failures were registered =1, ..., .i m  It should be noted that in case of 
highly reliable elements, i.e., insignificant failures, test plans with and without 
restoration of the failed elements are approximately equivalent [1]. It is required, 
based on the test results vector 1= ( , ..., ),md d d  to construct the ( , )sys sysP P d t  
lower -confidence boundary for the system reliability function (1). 

Let us denote by 1= ... mD d d  the total number of the element failures. 
Since the id  random variable has Poisson distribution with the = ,i i i iN T

=1, ..., ,i m  parameter (see [1–4]), the D random variable also has Poisson 
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distribution with parameter 
=1

= .
m

i i i
i

N T  Let us denote by ( )d  the standard 

upper  -confidence boundary for the Poisson distribution law parameter [1, 16]. 
Then, the following inequity is performed in accordance with definition of this 
boundary:  

 
=1

( ) ,
m

i i i
i

P N T D  (15) 

here  is the confidence coefficient. For each 1= ( , ..., )md d d vector of test 
results, let us introduce the dG  subset in the parameter space 1= ( , ..., ),m  
which is provided by the following inequalities: 

 
=1

( ), 0, =1, ..., .
m

i i i i
i

N T D i m  (16) 

It follows from (15) that the 1= ( , ..., )md d d  sets determined in this way 
generate a system of -confidence sets for the vector of parameters 

1= ( , ..., ).m  In accordance with the general method of confidence sets (see 
[1, 5, 16], etc.), the ( , )sys sysP P d t  lower -confidence boundary for the system 
reliability function could be found as: 

 ( , ) = min ( , ).sys sys sysP P d t P t  (17) 

The minimum is taken here over all 1= ( , ..., ) ,m dG  i.e., over the 
region given by inequalities (16). The system reliability function could be 
represented as: 

 
=1

( , ) = ( , , ) = exp[ ( , )],
m

sys i i i
i

P t H l r t f t  (18) 

where 

 
=1

( , ) = ( , , );
m

i i i i
i

f t f l r t  (19) 

 ( , , ) = ln ( , , ).i i i i i i if l r t H l r t  (20) 

In accordance with expressions (17)–(20), the lower confidence limit for the 
system reliability function in (17) has the following form: 

 ( , ) = exp ( , ) .sysP d t f d t  (21) 

Here ( , )f d t  is the upper confidence bound for function ( , ),f t  
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 ( , ) = max ( , ),f d t f t  (22) 

where the maximum is taken by .dG  Let us show that the ( , )f t  function is 
convex in the vector of parameters 1= ( , ..., ),m  which significantly 
simplifies the problem of finding the maximum in (22). For this purpose and in 
accordance with expressions (19), (20), it is sufficient to demonstrate that each  
i-th subsystem with the ( , , )i i iH l r t  reliability function is a subsystem with the 
failure increasing rate function (IRF-subsystem). This is equivalent to each 

( , , )i i i if l r t  function convexity in ,it  and, therefore, in the i  parameter for 
any fixed .t  

Convolution of the 1 2, ,  independent random variables, each of which is 
having the IRF distribution (with the increasing function of failure rate) also is 
provided with the IRF distribution [3]. Thus, taking into account relation (2), it 
is sufficient further to show that each of the 1 2, ,  random variables has the IRF 
distribution. For random variable 2,  it is not difficult to demonstrate by direct 
differentiation that the function 

 2
2 2( ) = ln ( ) = ln(1 [1 exp( )] )lt P t t  

has a monotonically increasing derivative. It follows from this that the 2  
random variable has IRF distribution. It follows for the 1( )P t  reliability function 
of the 1  random variable from expression (3) that:  

 1
=

[ ln ( )]= ln ,
n j j n jn

j k

d d dpP t C p q
dt dp dt

 

where = exp( );p t =1 exp( ),q t  from where 

 

1

1
=

1

=

[ ln ( )]= =

(exp( ) 1) .

n jk k n k j n jn n
j k

n jk k jn n
j k

d P t C p q C p q
dt

C C t

 

This function is monotonically increasing in t and, therefore, the 1  random 
variable also has the IRF distribution. Thus, the ( , , )i i i if l r t  function for each  
i-th subsystem determined in (20) is convex with respect to parameter > 0.i  
So, the ( , )f t  function is convex with respect to the vector of all parameters 

1=( , ..., ).m  In accordance with known results of the convex programming 
theory [17], the convex function maximum in (22) is reached in one of the dG  
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region ‘corner’ points of form (0, ..., 0, , 0, ..., 0),i  where = ( ) /( ),i i iD N T  
=1, ..., .i m  It follows that the upper confidence boundary (22) for the ( )f t  

function is determined by the following expression: 

 [ , , ( ) /( )],max max( , ) = ( , , ) = i i i i ii i i i
i i

f l r D t N Tf d t f l r t  

where the maximum is taken over the entire =1, ..., .i m  Whence and taking into 
account (21), the corresponding expression follows for the lower confidence 
boundary of the system reliability function:  

 min= [ , , ( ) / ( )].( , , )min( , ) = i i i i ii i i isys ii
H l r D t N TH l r tP d t  

Let us consider further several numerical examples illustrating construction of 
the lower confidence boundary for the system reliability function. 

Example 1. The system consists of 5m  various subsystems. Parameters of 
the , i il r  subsystems and test results of various type elements ,  ,  ,i i iN T d   

1, ...,  ,i m  are provided below: 
i   .......................................  1  2  3  4  5 
il   .......................................  2  5  2  4  3 
ir   ......................................  2  5  2  4  3 

iN   ...................................  10 12 10 12 15 
iT   .....................................  50 15 20 25 17 
id   ......................................  1  0  0  1  0 

Let us consider the case of ordinary loaded redundancy, where each ir  back-
up element in the i-th subsystem reserves one or another fixed element in this 
subsystem 1, ...,  .i m  In this case, the lower confidence boundary ( 0.95  con-
fidence factor) for the system reliability function (at t = 20) is ( ,  ) 0.891.sysP d t  

Example 2. Under conditions provided in Example 1, let us consider the 
case, where in accordance with the above model, each i-th subsystem contains ir  
reserve elements staying in the dynamic redundancy mode, 1, ...,  .i m  Then, the 
lower confidence boundary for the system reliability function constructed with 
the same data and using the above formulas is ( ,  ) 0.971.sysP d t  This value 
compared to the value obtained in Example 1 shows a significant gain from 
using the proposed approach (with the same confidence factor). 

Conclusion. Precise analytical formulas were found for the general system 
model with duplication of elements and possible additional redundancy in a 
more flexible element dynamic mode in each of the subsystems. These formulas 
indicate dependence of the system reliability function and the average time of 



I.V. Pavlov, L.K. Gordeev 

12  ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2020. № 5 

failure-free operation on the element reliability parameters. On the basis of these 
analytical expressions, solution to the problem of constructing the lower 
confidence boundary for the system reliability function was also obtained, based 
on results of testing its elements. Further, confidence estimations could be built 
on this basis for such major indicators as probability of the system failure-free 
operation for a given time, -percentage resource and average failure-free system 
operation time. Numerical examples were considered illustrating the benefits of 
the proposed approach in calculating the lower confidence boundary for the 
system reliability function. From the point of view of applications, extension of 
the results presented in regard to more general models of complex systems, as 
well as to more general classes (including nonparametric) of the system element 
failure-free operation time distribution, remains of considerable interest. 

Translated by K. Zykova 
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