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Abstract Keywords

One of the most common nonlinear time series Exponential autoregression,
(random processes with discrete time) models is the robust estimate, consistency,
exponential autoregressive model. In particular, it asymptotic normality,
describes such nonlinear effects as limit cycles, resonant —asymptotic relative efficiency
jumps, and dependence of the oscillation frequency on

amplitude. When identifying this model, the problem

arises of estimating its parameters — the coefficients of

the corresponding autoregressive equation. The most

common methods for estimating the parameters of an

exponential model are the least squares method and the

least absolute deviation method. Both of these methods

have a number of disadvantages, to eliminate which the

paper proposes an estimation method based on the

robust Huber approach. The obtained estimates occupy

an intermediate position between the least squares and

least absolute deviation estimates. It is assumed that the

stochastic sequence is described by the autoregressive

equation of the first order, is stationary and ergodic,

and the probability distribution of the innovations

process of the model is unknown. Unbiased, consis-

tency and asymptotic normality of the proposed

estimate are established by computer simulation. Its

asymptotic variance was found, which allows to obtain

an explicit expression for the relative efficiency of the

proposed estimate with respect to the least squares

estimate and the least absolute deviation estimate and to

calculate this efficiency for the most widespread Received 09.10.2019
probability distributions of the innovations sequence of  Accepted 13.12.2019

the equation of the autoregressive model © Author(s), 2020
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Robust Identification of an Exponential Autoregressive Model

Introduction. The exponential autoregression model is one of the most popular
of time series models (random processes with discrete time) [1]. The advantage
of this model lies in the possibility of obtaining, with its use, a description of the
nonlinear effects of a number, in particular, limit cycles, jumps resonance, and
the dependence of the oscillation frequency on the amplitude, which is
impossible in the framework of the linear autoregressive model. The exponential
autoregressive model has proven itself in technology [1], economics [2],
climatology [3], oceanology [4], biology [1].

The main task in identifying an exponential autoregressive model is to
evaluate its parameters — the coefficients of the autoregressive equation that
describes this model. The most common methods for estimating coefficients are
the least squares method and the least absolute deviation method. These methods
have more than two hundred years of history and are well studied for linear
models. In particular, if time series observations are Gaussian (normal) random
variables, then the least squares method gives the best results. If observations of
the time series were made with large measurement errors, then the least absolute
deviation method is more effective. In the second half of the 20th century,
the M-estimates method was developed, which includes the advantages of both
the least squares method and the least modulus method. For linear models,
the M-estimates almost not inferior to the least squares estimate in the Gaussian
case and surpasses it even with a small deviation of the probability distribution of
observations from the Gaussian. The M-estimate is almost always better than the
least absolute deviation estimates, second only to probability distributions with
the so-called heavy tails, which is typical for observations obtained with gross
measurement errors.

For nonlinear models, a comparison of the above three methods is poorly
understood. Separate results were obtained for threshold autoregression and
autoregression with random coefficients [5, 6]. In the present work, a compara-
tive study of these methods is carried out by computer simulation by evaluating
the parameters of exponential first-order autoregression.

Problem statement. The time series X;, t=0, 1, £2,..., described by

the first-order model of exponential autoregression satisfies the recurrence
equation

Xt = (a() + boe_coxtz_l )Xt—l + €. (1)

The coefficients ay, by, ¢y of equation (1) are real numbers and are model
parameters. The updating process g;, t=1,2,..., is a sequence of independent
identically distributed random variables with zero expectation function
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Ee; =0 and finite variance Dg; = Ee? =% <. Suppose that model (1) is
stationary and ergodic. A sufficient condition for this is, for example, the
simultaneous fulfillment of conditions |a|<1, ¢>0 and 6% < [7].

Model (1) is an example of smoothing another popular nonlinear model —
a threshold autoregressive model [8] of the form

a()Xt_l + &, if | Xt—l |> C;
| (ag +bo)Xioy +&, if | X |<C,

where C>0 is some threshold constant. Indeed, if | X;— | it is large, then the

value e™0%1 s close to zero; therefore, the right-hand side of (1) is practically
indistinguishable from aoX;_; +g;. As the | X;_;| decreases, the role of the
coefficient b, increases.

Consider the problem of estimating the parameters (ag,by,co) of equa-
tion (1) from observations Xj, X5,..., X, of a process X;, satisfying this
equation. We define the M-estimates of the coefficients (ag,bp,co) as the

minimum point (4, b, ¢) of the function

n 2
gla,b,c)= Zp(Xt —(a+be_cxt2—1 )Xt_lj , (2)

t=2
where p is the so-called p-function. It is usually assumed that p is an even and
downward-convex function. The least squares and the least absolute deviation

estimates are a special case of the M-estimates for p(x)=x? and p(x)=|x],
respectively.
The most common p-functions are [9] p-Huber function

%) x2, if |x|<k; 3)
X)=
S PYYNINCRST Y

and the p-Tukey function

x ) ’ .
o (x) = 1_(1_(EJ J , if | x|<k; (@)

1, if |x|>k.

Here k €(0,) is the tuning parameter, the change of which allows to achieve
the maximum efficiency of the M-estimates, depending on the specific type of
probability distribution density function f of the members €; of the updating
process.
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According to (2), (3) and the curves P
shown in Fig. 1, the M-estimates with the /
p-Huber function is a compromise 10}
between the least squares estimate and sl
the least absolute deviation estimate.
Since py(x) it coincides with x? in the O 3
neighborhood (—k,k) of the origin and
behaves linearly outside this neighbor-
hood, similar to |x|, the large residuals Fig. 1. p-Huber function:

X, —(a+be_CXt2-1)Xt_1, generated by I — p(x); 2— % 3— 2k|x|-k°

-4 -3 -2 -1 0 1 2 3 «x

large errors in the observations (large perturbations g;), they affect the target
function g(a,b,c) in a linear rather than quadratic manner, thereby reducing
the effect of these large errors on the minimum g(a, b,¢), and on the accuracy of
parameter estimation. The p-Tukey function, which ignores large residuals
(larger in magnitude than k), ignores it even more, reduces the contribution of
sharply distinguished observations, replacing them with unity.

The purpose of the work is to study the accuracy of the M-estimates with the
p-Huber function depending on the probability distribution of the members of
the update sequence ;.

Simulation studies of the properties of the M-estimates. At the first stage,
the non-bias and consistency of the M-estimates were studied by computer
simulation. For definiteness, it was assumed that gy =-0.3, by=-0.8, ¢y =1,
the sample size n varied from 100 to 800 in increments of 100. Random values
g, t=1,...,n, were modeled N =1,000 once using MATLAB random number
generator simulating the normal, logistic, and double exponential probability
distributions. Based on the generated values €;1,€;5,...,€i, , using the recurrence
relation (1) with a zero initial condition Xy =0, the realizations x;1, xi2,..., Xix,
i=1,2,...,N, of the time series x;1, X;j2,...,Xin, i=1,2,..., N, observations were
calculated. For each realization of the observations x;1, xi2,...,Xin, i=1,2,..., N,

the realization was found (&,-, l;,-,é,-), an M-estimates (&, l;,é) of the parameters

(ao, by, o), was determined, which was determined as the minimum point of the
objective function g(a,b,c) of the form (2). As p-functions in (2), p-functions (3)
and (4) were used. The function g(a,b,c) was minimized using the Levenberg —
Marquardt optimization algorithm [10], the essence of which is a combination
of the Newton method with the gradient descent method.

To study the probabilistic properties of the M-estimates, its expectation

function (E&, Eb, Eé) was approximated by averaging the realizations ( 4i, b & )
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— T — N N , N
by i=1,2,...,N, over the vector (&,b,c):(n‘lZai, n 1ty by, n‘lZcij, since
i-1 i=1 i=1

it follows from the law of large numbers that (E, l;, E) — (Ea, El;, E¢) at N — oo,
by definition, the non-bias of the estimate means that (E&,El;, Ec) = (agy, by, cp).

Thus, under the condition of non-bias, the difference (Z,I;,E)—(ao,bo,co) in
the simulation should take values close to zero.

The errors &=b —by of estimation of the second coordinate b, for
n=100,200,...,800 the double exponential probability distribution of random
variables €; and p-function (3) are given in the table. Small values of the o

allow us to conclude that the estimate b is not biased. For estimates of the other
two coordinates obtained including with the p-function (4) and for other
probability distributions of the updating sequence g;, the simulation results are
similar. This makes it possible to draw a similar conclusion about the non-bias
of M-estimates a and ¢ of parameters, ao and co, respectively.

The bias 5 and approximation A of the second moment of parameter b estimation
for various values of n of the sample size

100 200 300 400 500 600 700 800

-0.00262 | -0.02030.00247 | -0.00431 | 0.00828 | —-0.001832 | —0.000646 | -0.00227
0.0802 | 0.0399 | 0.0272 | 0.0198 | 0.0157 | 0.0132 0.0112 0.0105

S

> o

The validity of the M-estimates (4, b,¢) was verified by approximating the
second moments (E(&—ao)z,E(l;—bo)z,E(é—co )?) and variances (D&,DB,D&)
of its coordinates. Consistency by definition means that (a, l;, ¢)— (ag,by,cp), in
probability #n —> . From the Chebyshev inequality it follows that for
consistency, for example l;, it is enough that if a A= E(l;—bo)2 —>0n— o,
taking into account the established nonbias of b, it is enough if n— o the
condition Db—>0 is fulfilled. According to the law of large numbers,
A= n_lg (l;z- —by)? tends toA when N — oo, therefore, by the behavior of A,

i=1
one can judge the validity of the b estimation. The table also shows the values
A for n=100,200,...,800. With increasing n values A decrease, approaching

zero, which indicates the validity of the assessment b estimation.
Usually, in mathematical statistics, the rate of convergence of a consistent

estimate is proportional n~2. Such estimates are called Jn-consistent. To test
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the hypothesis that the rate of convergence of the M-estimates to the estimated

-1/2 12 35 a function of n was

parameter is proportional to n the expression n~
approximated according to the table by a polynomial of the first degree. Least

squares obtained

VnA ~1.0699 —0.0032683n +4.9245-10"5n2 — 2.5734- 10712,

1/2

which confirms the hypothesis of Db ~ constn 2. Similarly established

Jn-consistency of estimates @ and ¢.

At the second stage, the asymptotic normality of the M-estimates was studied
by computer simulation. For definiteness, it was assumed that a;=-0.3,
bp =—0.8, c¢p =1, are random variables (g
of g; have a double exponential distribu- iggg I 1
tion of probability, the p-function is de- 1400 |
scribed (3). Figure 2 shows the histogram |55

constructed from the results of 10,000 800\

simulated implementations b. The sym- 288:

metric and bell-shaped histograms sug- 208 L. ; ,

gest that the probability distribution of a 25 20 -1.5 -1.0-05 0 05
random variable b is close to normal. Fig. 2. Histogram of M-estimate of b

Testing the hypothesis of normality

of the b estimate for 10,000 implemen-tations using the y2-test allowed us to
accept it at a significance level of 0.001. A similar result was obtained for
estimates d and ¢.

Asymptotic properties of the M-estimates. The exact probability
distribution of estimates is very difficult to find and is possible only in the
simplest cases. It is usually possible to establish the asymptotic distribution of
the estimate, i.e., the distribution to which the probability distribution of the
estimate converges (weakly, by distribution) with an unlimited increase in the
number of observations. As a rule, such a limiting distribution turns out to be
normal, and the estimates in this case are called asymptotically normal. The

results obtained above suggest that the M-estimates (&, b, é) is asymptotically
normal. Below we will justify the asymptotic normality of the M-estimates
(&, b, é) with p-functions (3), (4).

Having expanded the objective function g(a,b,c) of the form (2) according

to the Taylor formula at a point (ag, by, co) up to the second order inclusive, we
obtain
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g(a,b,c)=g(ag, by, co) + ATo +%6TBG +d(a, b, c),

where

Jn oa ’ ob ’ oc
:(_Z plen X, = z p'(er) X0 & Z p'(er) X} boe” ol j;

t=2 t=2 t=2

= (Vn(a=a0),n(b—bo),Vn(c—co) );

A:L(agwo,bo,co) dg(a0, bo, <o) 5g(ao,bo,co)jT:

0%g(ag, by, co) 0*glag,by,co) 0°g(ag,bo,co)
Oa? 0adb Oalc

g 1| 2°8lag,bo,co) 0°glag, bo,co) 9%g(a0, bo,co)

n oaob ob? oboc

0%g(ag, by, co) 0%*g(ag,bo,co) 02glan,bo,co)
Oadc 0boc oc?

d(a,b,c) is an infinitesimal function of a higher order when (a,b,c)—

—> (g, bo,co) compared with (a—ag)? +(b—by)? +(c—co)?. The matrix B ele-
ments have the form

aZg(a0>b0)60) 2 a g(a0>b0)CO) Z coX?
—_— = "(e4)XF,, —S——"—"= "(gp) X2 e 0Xim1 |
Pye t% ()tl 2adb Ep(t)t1
n
0 g(goabbCO)CO) ZP”(St)X boe o)) tzl’
2 n
0 g(QO:SO)CO) — Z pu(gt)XtZ_le—ZcoXt_l ,
ob =2
2 n
0 g(ao,bo,co) ZP”(Et)X 1bOe 2c0Xt 4 z p(St)X3 coth_l’

2 n
0 g(aaoc,zbO)CO):Z N(gt)Xt6 1b2 ZCoX Zp(gt)X boe Ioh) tzl.
t=2

We show that there is lim B. For example, find lim 1M

n—»w n—owomn 862

By the assumption, random sequences & and X; are both stationary and

ergodic. Therefore, the sequences p”(g;)X? je 20Xt and p'(er) X7, —c0X{_y
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will also be stationary and ergodic [11]. Under the law of large numbers for
stationary and ergodic sequences (see [11]), we obtain that with n—
probability

12
_ z p"(at)Xf_lbge_ZCOth'l N E[p”(81)] E (ngge—2coxg );
)

n
L3 )Xo > Blpl(en) B Xgoe 3 ).
M=

From the form of the p-functions defined by formulas (3), (4), it follows
that Ep'(e;)=0. So from independence g from X, ; it follows:

E[p'(e)]E [ngoe-%x% ] _ 0. Thus, with 11— o probability

2
la g(a03b0>60) _)E[prr(gl)]E(ngg,e—ZCoX% )
n oc?

Calculating similarly the remaining elements of the matrix lim B, we
n—»0

obtain that in probability lim B=E[p"(g;)]K, where
n—>0
2 2
E(X?) E (X(Z,e_COXO ) -F (ngoe‘coxo )
K=| E (Xge_coxg ) E(Xge_zcoxg ) -E ( Xéboe 2058 ) .

2 2 2
-E (ngoe‘coxo ) -E (ngoe‘z“oxo ) E (ngge‘z“oxo )

Consequently
g(a,b,¢) = g(ao, bo, co) +AT9+%E[p"(81)]9TK9+ 8(a,b,c)+d(a,b,c),

where with n—> o 8(a,b,c) > 0 in probability.
Reasoning as in [12], we find the following: the asymptotic distribution of

the M-estimates (&, b, é) , which is the minimum point of the objective function

g(a,b,c), coincides with the asymptotic distribution of the minimum point
(&,5,5) of the function

g(a,b,c) = g(ap, by, co)+ ATO+ % E[p"(e1)]07K®,

representing a quadratic form. It is easy to show that
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(4,b,8)=—(E[p"(e1)]K) ' A.

Let us prove the asymptotic normality of the random vector A, from which

the asymptotic normality of the random vector (ﬁ, I;,E) will follow, and

therefore the asymptotic normality of the M-estimates (&, I;,é). Denote by the

A;-1 o-algebra of events generated by the set of random variables Xj,..., X;_;.
As was noted Ep'(e;) =0, then it follows from (1) that & does not depend on
X;1. By the definition of oc-algebra .4,_;, a random variable X;; is
measurable with respect to 4,_;. Therefore, from the properties of conditional
mathematical expectations [13] we have

E[p'(e¢)X¢-1 | Am1]= XiE[p'(er) | Am1]= X E[p'(e)] = 0.

Given the form of (3), (4) p-functions, we obtain: 0<E[(p'(g;)X;_1)?] < 0.

Therefore, by the central limit theorem for martingales (for example, [14])
a random sequence

\/; oa \/; =2

is asymptotically normal with a expectation function

1 de(ay, bo, T
1 dg(ao,bo,co) _ _ S o6 Xi

limE (% ip'(gt )Xt—l )

n—a0 =2
and variance
1 ( S ]
imD| — ) p'(e;) X1 |
et \/;tzz t t
Since the random variables & and X;; are both independent and
Ep'(e;)=0, so
E(liux) LS E[p/(e) Ximt ] == 3. B[ (e E[Xi1)
— > p(e) X |=— p'(er) X1 ]=— p'(e 1]=0.
\/;tzz t t \/; = t t \/;tzz t t—1

Since for s < t the random variables bb and dd are independent, and a = b,
then for all s < ¢.

The random variables p'(g;) and p'(gs)Xs—1X;—1 are independent and
Ep'(e;)=0. Then forall s<t

E[p'(g:)Xs-1p"(er) Xe-1] = E[p'(e)1E[p(€5) Xs—1 Xe1 ] = 0.

Further, independence of €; and X;_; implies
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E[(p'(er)X;-1)*1=E[p'(e)*1E[ X7, 1= E[p'(e1)* ] E[X5].

Soat n—>

n n 2
D(%EZ p'(er) X1 ] =E (%té p'(es )Xt—lj =
1 n n n

=—> Y Elp'(es)Xs1p'(e6) Xt ] > 1 > El(p'(er)Xi1)*1=Elp'(e1)*1E[X3].
M= s=2 N =

Thus, the random sequence %M is asymptotically normal with
n a

zero mean and variance E[p'(g;)?]E[X?].

It is similarly proved that the random sequence L %(a0.b0,c0) is
Jno o

asymptotically normal with zero mean and variance E[p'(al)z]E[Xge_ZCOX(% },

and the random sequence %M

5 is asymptotically normal with zero
n C

2
mean and variance E[p(g;)?]E [ngZe‘zcoxo }

To find the asymptotic covariance matrix of the vector A we get:

. 1 ag(ao’bO)CO) 1 ag(a(bb())c())) ' 2 ( 2 = X2)
lim E| —— - —F E( X2e~0% );
lim ( - ) 1 Gglen (e Xe

. 1 ag(aO)b()’CO) 1 ag(a0>b0)60)) ' 2 ( 4 —Ci X2)
lim E| — — =-E E( X5boe 0 |;
Jim o[ e el A eI Xofe

(Lag(ao,bo,CO)Lﬁg(ao,bo,m)
oo b n dc

Thus, the random vector A is asymptotically normal with zero mean and
the covariance matrix E[p’(g;)?]K. Since (&, b, E) =—(E[p"(g1)]K)™1 A, then the

lim E

n—>0

) =—E[p'()?] E(xgboe-ZCOX% )

covariance matrix of the vector (&,b,f), and, therefore, the covariance matrix

of M-estimates (&, b, é) is equals (see for example [15])

EG)]
(E[p"(1)])?
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Substituting into this expression p(x)=x2, we obtain the following: since
(x?) =2x and (x2)" =2, the least squares estimate (a*, b, C*) is asymptotically
normal with zero mean and the covariance matrix

EL2(e)’] K~'=Ee?K~! = 62K~
(E[2])2 !

Let us compare the quality of the M-estimates (&, b, é) and the least-

squares estimate (a*, b, ) Among the two scalar estimates, we will consider

the best one that deviates less from the estimated parameter. Estimates are
random; therefore, their deviations from the estimated parameter are also
random. It is logical to measure the accuracy of the estimate by expectation of
the square of the difference between the estimate and the parameter being
estimated, which for an asymptotically unbiased estimate coincides with its
asymptotic variance. Thus, it is advisable to compare the accuracy of two scalar
asymptotically unbiased estimates by comparing their asymptotic variances. If
the estimated parameter is a vector, and its estimates are asymptotically
unbiased and have asymptotic covariance matrices proportional to each other,
then it is natural to compare the accuracy of these estimates with the ratio of the
proportionality coefficients of their asymptotic variances.

Estimates (&, b, é) and (a*, b, ) are asymptotically normal with
proportional covariance matrices; therefore, we will compare the accuracy of the

estimates (&, b, 6) and (a*, b*,c*) with each other by comparing the quantities

’ 2
% and 2. The ratio
p (&

2 GX(E[p"(&1)])?

P —

PR e By
(E[p"(e1)])?

will be called the asymptotic relative efficiency of the M-estimate with respect to

the least squares estimate. Asymptotic relative efficiency shows how many times
more observations are needed to the least squares estimate compared with the
number of observations required by the M-estimate to achieve the same
accuracy. For example, e=2 means that to achieve the same accuracy, the
M-estimate requires 2 times less observations n, than the least squares estimate.

Asymptotic relative efficiency depends on the type of probability
distribution density f(x) of the updating process €;. Let us calculate the value
e for various distributions of the updating process ¢;.
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If g are Gaussian random variables with Eg; =0 and Dg; =1, so

f(x)= fg(x), where
2
=

1
Je)="pe

So
E[(p'(gl))z]zjjooo(p'(x))zfg(x)dx=4 kz—%e 2 +(1- kz)erf(%) =

kN2

=4 kz——e 2 +2(1 k2D (k) |;

N

Elp'e)]= | p”(x)fg(x)deZQYf(%)=4®o(k);

—00

erf? (kj
2
e(fgak): \/5 — 4(I)O(k)
k\/— k ) kz_i

2 kN2 2
k \/;e 2+(1k)erf(\/5 \/;e

2 42(1—k2)Dg (k)

2

T2 2 T 1 =
Here erf(x)= [ —=e*"dt is error function; ®y(x)= e 2dt is Laplace’s
£ Jn (J; V271

function.

Figure 3 shows the relationship between e(f,y,k) and k with a Gaussian
distribution €;,. The asymptotic relative efficiency of the M-estimate with
increases of k monotonically increases, that is, the effectiveness of the
M-estimate increases, at k — o0 approaching the least-squares efficiency. We
note that klim e(fg,k)=1, ie, k— o, when the M-estimate goes over to the

—w®

least-squares estimate, the quality of both estimates becomes the same. Also,
when k=0 the M-estimate becomes the least absolute deviation estimate. Since
when x >0

2

Dy(x) = +0(x3), e 2 =1—-x2+0(x), (5)

2erf(ﬁj N

then, lim e(fg,k)=2/m. Therefore, with a Gaussian distribution of random
k—0

variables g, the least squares estimate is approximately 1.5 times more effective
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e(fgr %) than the least absolute deviation estimate.

In other words, the accuracy of the least
0.9 | squares estimate constructed from n =100
the observations will be achieved using the

0.8 least absolute deviation estimates only
based on approximately n=150 obser-

0.77 vations.
0 1 2 3 i The assumption that &; are Gaussian

random variables is usually justified by the
central limit theorem of probability theory.
However, this theorem is limiting in nature
and the assumption that the probability
distribution of €; deviates slightly from the Gaussian one looks more realistic.
A typical model for violating the assumption of &, Gaussianity is the
assumption that it has a contaminated (clogged) Gaussian distribution, or Tukey

Fig. 3. Relationship between
e(fg,k) and k on normal g,
distribution

distribution, with a density [16]

x2 x?

fT(x)=(1—v)\/;—ne_2+v B2

e 22, 0<y<1, 1>1.

27T

In this case, the least squares method usually sharply loses its effectiveness [17].
Estimate e(fr,k). In this case the values o?=Esg;, E[p'(e;)?] and
E[p"(g1)] are the following

ol =1+1t>y-7y;

2

kf -2 | 4uk2 —

4(1-— f 2
Haloy) e (ﬁj N N

= 4(k2 +2(1-7)(1-k?)Dg(k) +2y(t* —k?) Dy (k)+
T

2 2
20D T k2 o |
Jn Jr ’

E[p"(el)lzzu—v)erf( sz)”yerf(r f) ((1 v)®o(k)+v®o(kD
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Consequently,
e(fr.k)=

2
(1+T2Y—Y)((1—Y)®0(k)+3’®0(];D

kY, k2 2 kb
k2+2(1—y)(1—k2)d)0(k)+2y(12—kz)d)o()+ (y-1)e 2 —1ye 2
t) Jn

Using (5), at t—>o get e(fr,k)=Ct?>+0(t), where C>0 is some
constant depending on k and Y.

Therefore, with increasing t value e(fr,k) the value increases indefinitely
for any k>0 and ye(0,1). Thus, the asymptotic relative efficiency of the
M-estimates with respect to the least squares estimate for t—c0 can be
arbitrarily large.

When k—0 we obtain the asymptotic relative efficiency of the least
absolute deviation estimate with respect to the estimate of least squares

21+ t2y —y)(v? 20y + 2yt + 9202 - 2721 +72)

e(fr.0)= lim e(fr.k) = .
k—0 i

_20—y+y)(ry—t-y)?

‘CZTE

which, as is easily seen, coincides with 2/m at =1 and y=0.

Conclusion. Using computer simulation, it was found that the M-estimates
of the coefficients of the equation of the exponential autoregression is unbiased,
consistent and asymptotically normal. The relationship betweem the asymptotic
variance of the M-estimates and the form of the probability distribution density
of the updating process of the autoregressive equation is found. The values of
the asymptotic variance of the M-estimates are calculated for the main types
of density. It is shown that in conditions close to practical, the M-estimates
is more efficient than the least squares estimate and the least absolute deviation
estimate.

Translated by K. Zykova
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MOJIOTUM ¥ METOJIbI TIOCTPOEHMSI MOJieniell panneit Bee-
JIEHHOJ HAa OCHOBE MX [MHAMMKM. BblIonHeH ananms
IMHAMMKM BcenmeHHOl Ha pasmuyHbIX CTafiUAX ee 9BO-
mouyun. [Iposenen pacyer mapaMeTpoB KOCMOTIOTMYE-
CKUX BO3MYIeHuil. IIpeycraBieHbl MeTo/bl BepuduKa-
IV MHIAIMOHHBIX MOJIeTIell 1 HOBbIE METOJbI fleTeK-
TUPOBAHNS TPABUTAIIMOHHBIX BOTH.

ITo Bompocam npuobperenus ob6paiairecs:
105005, Mocksa, 2-1 baymanckas ym., . 5, cp. 1
='@3Mn +7 (499) 263-60-45

press@bmstu.ru

https://bmstu.press

ISSN 1812-3368. Becrauxk MI'TY um. H.9. baymana. Cep. EcTecTBenHble HayKu. 2020. Ne 4 57



