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Introduction. The problem of analyzing regular languages, including the problem
of analyzing regularity/irregularity is very important in the formal languages’
theory. This is due to the fact that the regular languages’ theory is a linear part of
the entire formal languages’ theory, generates algorithmic foundation in the
syntactic analysis being the basis in the lexical analyzers’ development, and also
finds other quite non-trivial applications [1]. In addition, publications on purely
theoretical terms recently appeared concerning interesting, and partially
unexpected properties of regular languages, for example, interconnection between
the theory of regular languages and the theory of linear spaces [2]. This work
shows mutual reducibility of geometric and linguistic problems.

In general, study of the regular languages’ properties remains a topical
problem in accordance with several recent publications that reveal new aspects of
the long-known concepts [3, 4]. Applications of the regular languages’ theory to
problems that are not a priori associated with the theory of formal languages are
of particular interest [5].

At the same time, questions still remain that were not yet been resolved.
These include the study of relationship between certain numerical characteristics
of languages and the regularity and irregularity properties.

It should be noted that a direction was being developed for a long time,
which could conditionally be called arithmetization of the formal languages’
theory, where mutual reducibility of the linguistic problem itself and the
problem of the arithmetic functions and relations analysis is taking place (see,
for example, [6, 7]).

This article is devoted to the study of certain properties, as well as to
establishing certain irregularity sufficient conditions based on the properties of
numerical functions and integer vectors. It could be considered as continuation
of the work [8], where proof of a single sufficient condition for the languages’
irregularity based on the properties of the so-called strongly separable relations
on the set of natural numbers was presented. Results obtained provide several
new and more efficient tools compared with the known ones in analyzing
regularity/irregularity of languages, while giving certain arithmetic and geometric
characteristics of regularity and irregularity.

All results concerning irregularity conditions, except for the necessary
condition, associated with the concept of Z+-planes, are based on the Myhill —
Nerode theorem known in the theory of formal languages [9, 10]. In accordance
with this theorem, criterion for the language regularity is the factor set finiteness
determined by a certain equivalence relation associated with language.
Voluminous literature is devoted to the Myhill — Nerode theorem (see the
literature in Ref. [8]).
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Let us mention here only a detailed monograph [11], as well as several
works where the theorem generalization for trees is considered [12, 13].

It should be noted that subject of this work is in no way connected with
problems related to natural languages, although the authors are aware of several
works, where the theory of regular languages is discussed in connection with
these problems [14].

Character distribution vectors in language words. Necessary regularity

condition. Let us assume that A ={ay, ...,a,} is the finite alphabet and A" is the
set of all words over this alphabet.

Definition 1. Let us assume that f: A" — 7% is the function associating with
each ue A" word the f(u)=(ki, ... k,) vector, where k;, 1 <i<n, is the number

of the a; letter occurrences in the u word. This vector would be called the character
(letter) distribution vector in the a word.

It should be noted that such function is surjective, i.e., for each a vector the
ue A* word is defined in such a way that f(u)=o.

If L is the language over the A, alphabet, i.e, L< A" its image under the
function f shall further be denoted by T(L). The L+>T(L) obtained
correspondence could be inverted by determining using the T arbitrary set of

vectors the L(T), language consisting of all such ue A", words, for which
fu)eT.

Let us note that the introduced languages of the L(T) form generate a
rather narrow class of languages characterized by the following property: for any
ueL=L(T) word, words obtained from u by any permutation of letters
included in it are also contained in the L. Attention to this class is explained by
the fact that problem of irregularity in this regard (main problem of this work) is
solved simply and naturally. For the arbitrarily given L language, the
Lc I(T(L)) inclusion is taking place, but not the equality. Obviously, different
languages could have the same set of distribution vectors, and the L(T)
language is defined as the greatest (under inclusion) language having T, set of
distribution vectors.

The described approach leads to the following problems: characterizing the
classes of symbol (letter) distribution vectors arising from regular languages and
identifying the classes of vectors, for which the corresponding language is
irregular.

Definition 2. Let us denote the set of all sums of the fi+ f, form, where

fieU, f, €U,, as the sum of the Uy, Uy C Z% integer vector sets. This set shell
be denoted as Uy +U,.
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Further, having the T cZ’} set, the % cifi» fieT, set of all finite sums
i=1

could be considered for the c; € Z, arbitrary non-negative integer coefficients.
Since all coefficients of the linear combination are non-negative integers, this set
could be considered as the result of multiple addition of the T set to itself:
T+T+T +... Let us denote this set by 7" and call it the T set iteration.

Let us recall some definitions from linear algebra.

If S is linear space over the K field, then a plane (affine) in the S is called a set

N

of vectors of the fy+ D ¢;f; form for the f; €S, 0<i< N, fixed vectors and the
i=1

c; € K arbitrary elements. Let us provide the following definition.

N
Definition 3. Let us call a set of vectors of the fo+.cifi form for the
i=1

fo, fi€Z fixed vectors and for the c¢;€Z. and 1<i<N arbitrary non-
negative integer numbers as the Z+-plane in the 7'} set.

Since vectors involved in the linear combination written above are not
required to be linearly independent, different linear combinations could define
the same Z+-plane.Let us call the least of the N numbers for all linear
combinations defining the given Z+-plane as the Z+-plane dimension.

Some comments need to be made regarding the objects entered.

Let us consider the Z’ -planedefined by the fy, f;, 1<i<N, vectors (as

explained above), as well as a set in the R" (real arithmetic vector space)

N
consisting of all vectors of the fo+ > ¢;f; form (for the f; e R" fixed vectors
i=1

and for the ¢; €R arbitrary real numbers). This is an affine plane in the R”
(shift on the fy linear span of the system of fi,.., fy Vvectors) containing
Z+-plane and having the same dimension.

Let us consider the E c Z'} set to be finitely generated, if there exists a finite
system of the fi,.., fy, vectors, that any f € E vector could be written as

N
f=>cifi for several ¢;eZ, numbers. If T is the finitely generated set of
i=1
vectors, then the same is the T set, and then it is also a plane.
Theorem 1. If the L language is regular, then the T(L) set is the union of
finite set of the Z . -planes.
<« Theorem proving follows from the lemma below.
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Lemma 1. Let L; and L, be the languages over a certain alphabet. Then

1) T(L U Ly) = T(L) W T(Ly), T(LiLy) = T(L) + T(Ly), T(L') =(T(L))s

2) let Ly, L and L be the languages over a certain A alphabet, and let each
T(Ly),T(L,) and T(L) set be the union of a finite set of the Z.-planes. Then,
each T(L;)UT(Ly), T(L)+T(Ly),(T(L))" set is also the union of a finite set of
the Z.,.-planes.

Proof of the first statement is easily obtained from the fact that when
multiplying (concatenating) two words of a language, their distribution vectors
are added, and also from taking into consideration definition of language
iteration and iteration of a set of vectors.

Second statement is the direct consequence of the first.

Now let us prove the theorem. Any regular language is obtained from the
initial elementary regular languages, i.e., from an empty language, the language
consisting of a single empty word and from the language that includes one
single-character word over the A={a,..,a,} given alphabet, by using

operations of union, concatenation and iteration. Sets of vectors corresponding
to these languages are as follows:

1) T(D) =,

2) TR} =0 (zero vector in Z");

3) T({a;}) ={(0, s 0,1,0, ..0)}, where a; is the character over the A=

1
={a, ....,a,}, given alphabet.

In 2) and 3) the Z+-plane of zero dimension is obtained.

It follows from Lemma 1 (second statement) that the sets of distribution
vectors corresponding to languages obtained in these operations from the
simplest languages are the finite unions of the Z+-planes. Such is the T(L) set
for any regular L language. This proves Theorem 1. P

Theorem 1 is true for any regular language, and not just for a language of
the I(T) form, but if the T set of vectors is such that it does not satisty the
theorem condition, then any language having this set of distribution vectors
would be irregular, including the L(T) greatest (under inclusion) language.

Theorem 1 provides an obvious way to obtain irregular languages: it is
sufficient to take the L(T) language, where the T set of vectors could not be
represented as a finite union of the Z.-planes. The simplest example: let the
alphabet be A ={aj, a,}, and the T set of vectors would be defined as the set of

all vectors of the (m,m?) form. Then any language having such a set of
distribution vectors, including the I(T) language, would be irregular.
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The given example could be quite easily analyzed using the pumping (or
growth) lemma [15] or the Myhill — Nerode theorem, but a more complicated
example gives a language defined by a set of vectors, where the i-th coordinate of
each (ki,...k,) vector is expressed quadratically through the others, namely

ki=>Yc jka for some ie{l,..,n} and integer non-negative (at the same time

J#i
non-zero) ¢; numbers (moreover, the set of these numbers depends on the
vector).

Irregularity of such language (and together with it of all languages with a
given set of distribution vectors) is a direct consequence of Theorem 1. Proving
its irregularity using the growth lemma or the Myhill — Nerode theorem
requires a rather complicated analysis.

Regarding possibilities of analyzing irregularity using the growth lemma,
attention should be paid to [16].

Thus, Theorem 1 turns out to be a very efficient tool in proving irregularity
of languages, which, unlike the growth lemma, is not requiring a detailed proper
linguistic analysis of any particular language. By virtue of this theorem, it is
sufficient to take any set of the T vectors to build an irregular language that
could not be represented as the finite union of the Z+-planes. In particular, such
would include the all (infinite) sets of vectors (points) that do not contain any

single Z-direct (i.e., one-dimensional Z.-plane). Detailed geometric analysis
of such sets is not the subject of this work.

Statement converse to Theorem 1 is not possible. For example, the
{a"b" :n>0} irregular language over the {a,b} alphabet defines the
{(n,n):n=20}={n(1,1):n =0} set of vectors generating a single-dimensional
plane (right line).

Equivalence of words and equivalence of vectors. Let us consider here only
languages of the L(T') form for a certain set of the T vectors.

The Myhill — Nerode theorem [8-10], which is a criterion in the regularity
of languages, is based on determining the equivalence relation on a set of words
over the A arbitrary finite alphabet that defines the L language over this
alphabet.

Definition 4. Words u and v are considered equivalent in relation to the L
language (L equivalent); if for any x € A" word, ux and vx words or both belong
to the L language, or both do not belong to it, in this case we write u=p v.

Language regularity criterion mentioned above is as follows: the L language
is regular then and only then, if the set of equivalence classes defined by the =|,

ISSN 1812-3368. Bectuuk MI'TY um. H.9. baymana. Cep. EcrecTBenHble Haykm. 2020. Ne 3 35



A1 Belousov, R.S. Ismagilov, L.E. Filippova

relation is finite; the number of these classes is called the index of considered
equivalence relation.

Next, let us introduce the equivalence relation on the set of Z’ vectors
with integer non-negative coordinates. In view of surjectivity of the
f:A" —Z" function noted above, each vector of this set could be considered
as the distribution vector of the number of characters in a certain word. It is
natural to expect that the equivalence relation on a set of vectors is connected
to the equivalence relation on the set of words. Such connection is established
below.

Definition 5. Let a set of the T cZ" vectors be given. Let us call the
O, Y € Z" vectors T-equivalent, if for any yeZt vector, both the ¢+, y+7y
vectors either belong to the T set or both do not belong to it. Then, let us write:
¢=rVy.

Let us establish connection between the thus determined equivalence of
vectors and the equivalence of words defined by a certain language. Let the L
language be defined by a set of T vectors, i.e., it consists of all u words over the
A alphabet, for which f(u)eT.

Lemma 2. L-equivalence of the u and v words and is equivalent to the
T-equivalence of the f(u)and f(v) vectors.

<« Let the u and v words be not L-equivalent: u #] v, where the L language
is determined by the set of T vectors, i.e., L=L(T). Then, the xe A~ word
could be found, for which the word is uxeL,and the word vx¢ L, and
consequently f(ux)= f(u)+ f(x)eT, f(vx)= f(v)+ f(x)eT. This is followed
by f(u)#r f(v). On the opposite, let the a, B € Z’ vectors be non T-equiva-

lent: o #7 B. Then, there appears the y “separating” vector v, ie., a+yeT,
B+v¢eT. Due to surjectivity of the f function there are the u,v,x € A¥, words,
for which f(u)=oa, f(v)=p, f(x)=y, and due to the f function properties
we have f(u)+ f(x)=f(ux)eT, while f(v)+ f(x)= =f(vx)¢T, and,
therefore, ux € L,vx ¢ L,1i.e., the u and v words are not L-equivalent: u #y v. P

Thus, L(T)-equivalence of words is equivalent to the T-equivalence of
vectors.

Corollary 1. The following conditions are equivalent: a) L(T) language is
irregular; b) infinite set of pairwise non T-equivalent vectors exist in the 7'} set.

Note that condition b) is equivalent to the following condition: for any
integer r there exists in the Z} set a subset consisting of r pairwise non T-equiva-
lent vectors.
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For further study of equivalence, let us introduce a notation. For any

¢ €Z’} vector, let us denote by (I'—¢), the set of all yeZ’} vectors, such as
Y+ @ eT. This definition demonstrates that in order to obtain the (T — @), set,
it is required to take all vectors of the a—¢, ae T, form and discard vectors
(if any) from the resulting set that have at least one negative coordinate.

Lemma 3. T-equivalence of the @, \yeZ’l vectors is equivalent to the
condition (T —@); =(T —y);.

4 Let o=ry and ae(T—@);. Then, if p+aeT, and since ¢ =7,
then y+oaeT and ae(T — ), vice versa, if (T —¢)+ =(T —);, then for any
o vector we have y+aeT < o+oaeT, ie, =7 y. P

Thus, the set of vector equivalence classes is identified with the (T —¢)+
family of subsets. Hence, if there is an infinite family of (different) (T — ), sets,
then the L(T) language is irregular.

Irregularity conditions associated with vector oscillation properties.
Hereinafter, let us consider certain properties of the set of T vectors, where the
L(T) language turns out to be irregular. Let us introduce notation and concepts
used below.

For the ¢ = (o1, ..., 9,), W =(y1, ..., ;) vectors, the @ <\ notation means

that ¢; <y; for any i=1,...,n. Further we assume that min¢@ = min ¢; and
1<i<n

max (¢ = max ;.
1<i<n

Definition 6. Let us denote the @vector oscillation as the o(p)=
=max@—min¢ number. The (r,..,r) vector (with identical components) is
denoted by r.

Let us also introduce equivalence relation on the Z, set of non-negative
integers, denoting the k and I numbers as equivalent, if the k and [ vectors are
T-equivalent.

Theorem 2. Let the T set possess the following properties:

1) for any M number, there is such @ =(Qy,....0,) €T, that ¢; > M for all
i=1,..,m1m

2) there is such € >0, that max ¢ >(1+¢)min¢ forany ¢ €T vector.

Then the L(T) language is irregular.

Comment. Property 1) means that the T set contains vectors with arbitrarily
large values of each coordinate.

Property 2) could be described by the ® (¢) > & min ¢ inequality.
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Theorem 2 could be proved in the following way: admit the contrary (i.e.,
the language is regular), apply the required regularity criterion specified in
Theorem 1, and arrive at a contradiction (proving that the T set possessing
properties (1) and (2) could not be represented as the finite union of planes).
However, let us choose here another way based on the Myhill — Nerode
theorem.

<« Assume that the L(T) language is regular. Let us show that in this case
the Z, set has a pair of equivalent numbers (equivalence relation was
introduced before the theorem statement). Indeed, assuming the contrary, we
obtain an infinite set of pairwise non T-equivalent vectors of the 7 form that
contradicts the I(T) language regularity (by the Myhill — Nerode theorem).
Thus, we have a pair of the [,k equivalent numbers. Let us demonstrate that
this leads to a contradiction.

It could be assumed that /> k. Let us accept that r =I—k. Let us take the
@ >k, vector in the T set, which is possible by virtue of property (1) in the T set.
Then, @—k (T —k),. Since the I,k numbers are equivalent, according to
Lemma 4, (T - k )y =(T— 7)+, and therefore ¢ - ke (T - T)+. Consequently,
o—k+IleT, ie, o+7eT. Using a similar argument for the ¢@+7 vector
(instead of the ¢ vector), the @ +27 €T is obtained. Continuing this argument,
it could be seen that ¢+sreT for any s>1. By virtue of property (2), the
(¢ +sr) 2emin(p+sr)=esr inequity is obtained. Thus, vector oscillation
increases unlimitedly (note that € is positive) in the sequence of @ +sreT,
s>1, vectors. Moreover, each subsequent vector in this sequence is obtained
from the previous one by adding a vector with matching coordinates. However,
vector oscillation could not alter when adding a vector with matching coordi-
nates. Contradiction. The theorem is proved. P

A simple example of a set of the T cZ%, n>1, vectors satisfying the
condition of Theorem 2 is a set consisting of all vectors of the ¢=
=(r,(1+p)r, ...,(1+(n—1)p)r) form, where r is the arbitrary non-negative
integer; p is the fixed positive integer. It is clear that min¢=r, ()=
=(n-1)pr, e=(n—1)p. This set defines the L(T) irregular language according
to Theorem 2. Obviously, the result would not change under arbitrary
permutations of the ¢ vector coordinates.

In order to derive another sign of irregularity, let us use the following term.

Let the infinite X set and the f:X —Z'} function be provided. Let us call it
infinitely great, if f(x,)— oo for any infinite sequence of the x, € X pairwise
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different elements (this condition is equivale to the following: for any M
number, the set of points, where f(x,)< M is finite).

Theorem 3. Let the T set of distribution vectors have property (1) from the
condition of Theorem 2 and let the ©(), ¢ € T, oscillation function be infinitely

great. Then, the L(T) language is irregular.
<« Let us assume that the L(T) language is regular. Then, as shown in
proving Theorem 2, the I, k equivalent numbers are obtained. Repeating the

reasoning from the proof of Theorem 2 (this is possible due to property (1)), the
¢+sreT, s=1, infinite sequence of vectors is obtained having the same

oscillation (equal to the ¢ = k vector oscillation). This contradicts the fact that
the o(p), ¢ € T, function is infinitely great. P>

A language defined by the Z'} set of vectors in the (X, Xpi1sor Xmin—1)»

m>0, form, where {x,,};,>0, i.e., Fibonacci sequence, could serve as an
example of irregular language satisfying Theorem 3. It should be noted that
instead of the Fibonacci sequence any sequence could be taken that is
determined by the x,=x,_;+x,-, n>2, recurrence relation under the

Xo =dg, X1 =a; arbitrary initial conditions (known as the Lucas sequence).

Fibonacci sequence is chosen solely as a specific (and most popular) example.
Let us also note that infinity of the oscillation function does not imply
fulfillment of condition 1) of Theorem 2 (existence of arbitrarily large vectors).
For example, it is possible to define on the set of two-dimensional vectors a
subset, where value of the first component is bounded from above (or even is a
constant), and values of the second component are unlimitedly increasing.
Besides, if the second component is growing linearly, then the language
defined by such set of vectors could quite well turn out to be regular.
The simplest example: the T ={(2,n):n>0} set of vectors defines the

L(T)=b"ab’ab” c{a,b}" regular language.

Sparse sets and irregular languages. Definition 7. Let us consider the
TcZ% set to be sparse, if there exists such an infinite sequence of the
ok €Z%, k=1,2,..., vectors, that the (T —o), sets are pairwise different.

Theorem 4. If T < 7} is the sparse set, then the L(T) language is irregular.

Theorem 4 follows from Lemma 3 and from irregularity criterion that
follows from the Myhill — Nerode theorem.

Thus, to obtain irregular languages, it is sufficient to build sparse sets in Z.

First, let us indicate such sets in Z,; in this case, we restrict ourselves to
simple examples. Let us take the ¢x, k=1,2,...; sequence of natural numbers and
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denote by S the set of its values (i.e., its range of values as a function of the natural
argument).

Theorem 5. Let the ck,k=1,2,..., indicated sequence be strictly increasing
and strictly convex (i.e., 2¢y < Cp—1 +Cm+1 ). Then the S set is sparse.

« Let us take the ¢, number and consider the (S—c¢,,)s ={ck — ¢ : k> m}
set. The smallest positive element of this set is c;41 —c,. Condition of strict
convexity results in 2c, =cCp+Cp <Cpo1 +Cmy followed by ¢y —cpa <
<Cm+1 —Cm. Thus, the sequence of minima strictly increases. So, these minima
are pairwise different; therefore, the (S—c,,); sets are pairwise different. »

Let us reduce analysis of sparse sets in Z’ to the case of such sets in Z,.
Taking the E c Z" set, let us denote by Ej, 1<k <n, the set compiled of the

k-th vector coordinates of the E set. Let us call this set the k-cut-off of the E set.
Theorem 6. If Ei, 1<k<n, is a sparse set (for a certain k), then the

EcZ setis sparse.
<« Let Ei, 1<k <n, be the sparse set. Then, there exists such the countable

¢j,j=1L2,.., set of numbers that the (Ex —c;); sets are pairwise different. Let

us take the v;=(0,..,0,c;,0,..,0) vectors, where in the j-th vector all
I

coordinates except the i-th are equal to zero, and the k-th coordinate is equal to

cj, and let us consider the (E—7v;), sets. Their k-cut-offs are the (Ex —c;), sets

that are pairwise different. Therefore, the (E—y;); sets themselves are also

pairwise different. Thus, E c Z} is a sparse set. P

Indicated above leads to the following simple method for building the sparse
sets. Let us select any strictly increasing and strictly convex sequence of
numbers. Let us fix the arbitrary k €{l,..,n} and take the E set of vectors, for
which the k-cut-off is a set of numbers from the indicated sequence.

A simple example: let us define a sequence of natural numbers, which is a
subsequence of Fibonacci numbers starting from 3: 3, 5, 8, 13, 21, 34, ... It is easy
to show that it is strictly convex (and, of course, strictly increasing). Then, corre-
sponding sparse set of vectors (of arbitrary dimension) could be determined in
such a way that all their coordinates, except for some, could take arbitrary
values, and values of several (selected) coordinates generate the above sequence.
Language corresponding to this set could easily be determined. In the simplest
case of the two-letter alphabet, it is determined by the (m, ni) set of vectors,
where the m number could be anything, and the 7, numbers generate the above

subsequence of Fibonacci numbers. It should be noted that in such simple case
language irregularity could also be proved using the growth lemma, but the rea-
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soning would be much longer and more complicated. Of course, any strictly
convex and strictly increasing sequence could be taken, and for each vector
component it would be proprietary.

Regarding the examples given in the article, some comments should be made.
Due to necessity, these examples are purely illustrative. These are the first “quick”
examples that demonstrate possibilities of the proposed theoretical apparatus and
are built on the model of well-known similar examples. As a rule, they are con-
nected to the numerical characteristics of words of a language (see examples on
growth lemmas in Refs. [15-17], the Myhill — Nerode theorem [8, 11]). Examples
in this work are focused primarily on them in order to show higher efficiency of
the proposed methods of analyzing regularity/irregularity. In addition, these ex-
amples could be of interest in regard to further discussion on connections be-
tween the theory of formal languages and other branches of mathematics. There-
fore, relations naturally arise with properties of numerical sequences, Fibonacci
sequences, in particular, relations between irregular languages and non-linear
manifolds in the affine spaces. This is of interest in view of the well-known defini-
tion of context-free languages by means of algebraic (non-linear) equation sys-
tems in semirings [18]. In the authors’ opinion, language irregularity connection
with properties of strictly convex sequences, which play an essential role in com-
putational mathematics, appears to be very interesting and rather unexpected.

However, development of real meaningful applications in the approach
proposed in this article, for example in theoretical programming, is the subject
of a separate publication.

Conclusion. The main results consist in proving some important properties
of regular languages in terms of properties of the number of letters distribution
vectors in the words of a language. This continues the direction of research
presented in Ref. [8], provides some new and more efficient tools in analyzing
regularity/irregularity, and also defines certain classes of irregular languages
giving certain arithmetic and geometric characteristic of irregularity, which is
the main element of this work scientific novelty.

Primarily, Theorem 1 provides necessary regularity condition in terms of the
Z +-planes and determines classes of irregular languages through the manifold
properties in affine spaces that could not be represented as the finite union of
Z-planes. Theorems 2 and 3 connect language irregularity with the set of
distribution vectors determining it, where there are vectors with arbitrarily large
values of each coordinate and unboundedly growing oscillation. Theorem 4
determines a class of irregular languages in terms of sparse sets and strictly convex
numerical sequences that make it possible to build such sets. All these language
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analysis tools shed additional light on the possibility of studying the properties of
languages based on the Myhill — Nerode theorem. It is equally important that the
obtained results provide certain ways in building irregular languages, describe
their specific classes in accordance with the distribution vectors properties, and
not only help to answer the question of specific languages regularity/irregularity.

In terms of developing the results obtained, it is of interest to generalize
such arithmetic and geometric methods of language analysis in relation to their
broader classes, and especially important to the context-free languages.

Translated by D.L. Alekhin
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