## КВАЗИУПРУГОЕ И НИЗКОЧАСТОТНОЕ КОМБИНАЦИОННОЕ РАССЕЯНИЕ СВЕТА В КРИСТАЛЛАХ НИОБАТА ЛИТИЯ С ДЕФЕКТАМИ СТЕХИОМЕТРИИ

| А.А. Аникьев <sup>1</sup>  | aaanikyev@mail.ru  |
|----------------------------|--------------------|
| М.Ф. Умаров <sup>2</sup>   | umma54@rambler.ru  |
| Э.Н. Аникьева <sup>3</sup> | korol_0909@mail.ru |

# <sup>1</sup> МГТУ им. Н.Э. Баумана, Москва, Российская Федерация <sup>2</sup> ВоГУ, Вологда, Российская Федерация

<sup>3</sup> Мичуринский ГАУ, Мичуринск, Тамбовская обл., Российская Федерация

### Аннотация

#### Ключевые слова

Исследованы спектры квазиупругого рассеяния Дислокации, акустическая света при температуре 296 К в образцах ниобата добротность, комбинационлития различной степени несовершенства, опреное рассеяние света, ниобат деляемой по акустической добротности. Проведен лития, стехиометрия количественный анализ спектров в диапазоне значений частоты 0...70 см<sup>-1</sup> для образцов с различным значением добротности в модели, учитывающей связь низкочастотной оптической моды А<sub>1</sub>(ТО)-типа симметрии с акустической плотностью состояний, проявляющейся в спектре в результате нарушения правил отбора по волновому вектору в кристалле с дефектами стехиометрии. Результаты, полученные при сопоставлении модельных расчетов, с экспериментальными данными, позволяют сделать вывод о существенном вкладе дефектов стехиометрии в интенсивность квазиупругого рассеяния света конгруэнтными Поступила 17.04.2018 кристаллами ниобата лития © Автор(ы), 2019

Введение. Сегнетоэлектрические кристаллы ниобата лития широко применяют в нелинейной оптике, акусто- и оптоэлектронике в качестве преобразователей частоты лазерного и широкополосного излучения, амплитудно-фазовых модуляторов и дефлекторов световых пучков, акустооптических преобразователей и фильтров. Разработка новых оптических устройств и развитие технологий направленного изменения свойств материалов стимулируют исследования по созданию материалов на основе ниобата лития с его уникальным набором физических свойств, но обладающих значительно большей стабильностью работы, устойчивостью к оптическо-

32 ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2019. № 2

му искажению и тем самым расширенной областью применения. Поскольку ниобат лития как фаза переменного состава обладает широкой областью гомогенности на фазовой диаграмме (44,5...50,5 моль. % Li<sub>2</sub>O при температуре плавления 1460 К, т. е. почти 6 моль. %), его свойствами можно управлять в широких пределах изменением стехиометрии и легированием. Особенностью ниобата лития является размытый максимум кривой солидуса на фазовой диаграмме Li<sub>2</sub>O-Nb<sub>2</sub>O<sub>5</sub> при значении 48,65 мол. %, где R = 0,946, а не при 50 мол. %, что соответствовало бы стехиометрическому составу (R = [Li/Nb] = 1). Только при этом значении состав расплава соответствует составу твердой фазы. В связи с этим такой состав расплава называется конгруэнтным (congruent — соответствующий) [1]. Дефицит лития приводит к разупорядочению катионной подрешетки — порядок следования лития и ниобия внутри кислородных октаэдров вдоль оси третьего порядка нарушается. Вакантные места лития также могут занимать ионы металлов, радиусы которых соответствуют размерам пустот кислородных октаэдров. В связи с этим свойством легирование кристаллов ниобата лития примесями двух- и трехвалентных металлов может существенно изменять его оптические свойства. Например, легирование так называемыми нефоторефрактивными примесями, такими как катионы  $Mg^{2+}$ ,  $Zn^{2+}$ , на 2 порядка снижает эффект фоторефракции при концентрациях примесей выше некоторых пороговых значений [2, 3].

Наряду с точечными дефектами, кристаллы ниобата лития имеют большое число протяженных дефектов как фаза переменного состава. К таким протяженным дефектам относятся микровключения и кластеры примесных фаз Li<sub>3</sub>NbO<sub>4</sub> и LiNb<sub>3</sub>O<sub>8</sub>, границы зерен, дислокации и дислокационные нити. Точечные дефекты катионной подрешетки способствуют образованию протяженных дефектов, связанных с отклонением соотношения компонентов расплава от стехиометрического. Все эти дефекты оказывают влияние как на оптические [3, 4], так и на акустические свойства кристаллов [5–8].

Наиболее чувствительным оптическим методом изучения дефектов кристаллической структуры является спектроскопия комбинационного рассеяния света (КРС) первого и второго порядков. Наряду с ангармонизмом колебаний, несовершенства структуры приводят к уменьшению времени жизни собственных колебаний решетки и тем самым к уширению линий комбинационного рассеяния света, проявлению линий других симметрий в данной поляризационной геометрии рассеяния, возрастанию интенсивности низкочастотной области спектра и нарушению правил отбора по волновому вектору. Результатом, например, нарушения правил отбора по волновому вектору может быть проявление в спектрах первого порядка плотности акустических или оптических колебаний значительной части зоны Бриллюэна.

В работе проведен анализ спектров КРС конгруэнтных образцов ниобата лития, имеющих различную степень несовершенства структуры при температурах, далеких от структурного фазового перехода, в целях выяснения характера изменений квазиупругого рассеяния света, обусловленного дефектами решетки. Степень дефектов стехиометрии образцов оценивалась по акустическому поглощению, измеренному радиотехническим методом.

Методика эксперимента. Исследуемые в настоящей работе конгруэнтные кристаллы ниобата лития LiNbO<sub>3</sub> выращены в НПО «ФОНОН» в воздушной атмосфере методом Чохральского из расплава конгруэнтного состава с неконтролируемыми примесями в исходной шихте Li<sub>2</sub>O–Nb<sub>2</sub>O<sub>5</sub>. Для оценки влияния дислокаций и других макродефектов на добротность пьезорезонаторов из ниобата лития изменялись условия выращивания: скорость вытягивания затравки из расплава варьировалась в различных экспериментах в диапазоне значений 5...23 мм/ч. При этом частота вращения затравки оставалась неизменной: 15 мин<sup>-1</sup>. Осевой градиент составлял 3...5 °С/мм. Установлено, что уменьшение скорости вытягивания приводит к резкому уменьшению плотности дислокаций в кристаллах ниобата лития [9]. В настоящее время выращивание кристаллов ниобата лития хорошего качества с низкой концентрацией собственных дефектов проводится при значениях скорости вытягивания кристалла из расплава, не превышающих 0,1...0,3 мм/ч, и осевого градиента не более 1 °С/мм.

Спектры КРС исходных образцов с измеренными добротностями (типа I) сравнивались со спектрами КРС на образцах другого происхождения, выращенных в условиях контролируемых примесей (тип II).

Стехиометрические и конгруэнтные монокристаллы ниобата лития LiNbO<sub>3</sub> (образцы типа II) с контролируемыми примесями выращены в ИХТРЭМС КНЦ РАН в воздушной атмосфере методом Чохральского из расплава Li<sub>2</sub>O–Nb<sub>2</sub>O<sub>5</sub> с 58,6 мол. % Li<sub>2</sub>O и конгруэнтного расплава соответственно. Для конгруэнтного расплава применялась гранулированная шихта конгруэнтного состава (48,6 мол. % Li<sub>2</sub>O), полученная методом синтезагрануляции. Концентрация посторонних примесей в шихте для таких образцов контролировалась и не превышала  $5 \cdot 10^{-4}$  мас. %. Скорость вытягивания 1,1 мм/ч, частота вращения 14 мин<sup>-1</sup>. Осевой градиент 1 °С/мм [10].

Образцы типа I для исследований спектров КРС вырезались из монодоменизированных кристаллов в форме прямоугольных параллелепипедов размерами 9×7×5 мм, ребра которых совпадали с направлениями кристаллографических осей Х, Ү, Z. Грани образцов полировались.

Спектры КРС возбуждались линией 514,5 нм аргонового лазера и регистрировались на модернизированном двойном монохроматоре ДФС-24, оснащенном системой счета фотонов. Мощность возбуждающего излучения не превышала 2 мВт. Спектры регистрировались с разрешением 1...2 см<sup>-1</sup>. Обработка спектров проводилась с использованием программы OriginPro 8, точность определения значений частоты, ширины и интенсивности линий составляла  $\pm 2 \text{ см}^{-1}$ ,  $\pm 3 \text{ см}^{-1}$  и 6 % соответственно.

Образцы типа II для исследований спектров КРС вырезались из монодоменизированных кристаллов в форме прямоугольных параллелепипедов размерами 8 × 7 × 6 мм, ребра которых совпадали с направлениями кристаллографических осей Х, Ү, Z. Грани образцов полировались.

Спектры КРС возбуждались линией 514,5 нм аргонового лазера Spectra Physics (модель 2018-RM) и регистрировались спектрографом T64000 (Horiba Jobin Yvon) с использованием конфокального микроскопа. Обработка спектров проводилась с помощью пакета программ Horiba LabSpec 5.0 и Origin 8.1. Точность определения значений частоты, ширины и интенсивностей линий составляла  $\pm 1 \text{ см}^{-1}$ ,  $\pm 3 \text{ см}^{-1}$  и 5 % соответственно.

Измерения акустической добротности проводились на образцах ниобата лития типа I со срезами (Y + 36°) резонансным радиотехническим методом на частоте 300 МГц. Всего было изготовлено пять образцов с различными значениями измеренных добротностей.

Экспериментальные результаты. При комнатной температуре ниобат лития является одноосным кристаллом и принадлежит орторомбической пространственной группе симметрии R3c (C<sub>3v</sub>). Точечная группа симметрии 3т. Элементарная ячейка содержит две формульные единицы или 10 атомов. Согласно неприводимому представлению пространственной группы R3с, распределение по симметрии колебаний в центре зоны Бриллюэна имеет вид [11]:  $5A_1 + 5A_2 + 10E$ . Из них (1A + 1E) являются акустическими, а остальные — оптическими. Таким образом, в спектрах КРС и ИК-поглощения должны проявляться колебания симметрии 4A<sub>1</sub> + 9E.

Спектры КРС одного из образцов конгруэнтных кристаллов типа I с наибольшим значением добротности  $Q = 1,45 \cdot 10^4$ , записанные в геометрии рассеяния X(ZZ)Y, приведены на рис. 1, а. В этой геометрии рассеяния активны четыре колебания А<sub>1</sub>(ТО)-типа симметрии. В спектре наря-

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2019. № 2

ду с четырьмя модами  $A_1(TO)$ -типа симметрии проявляются и моды E(TO+LO)-типов симметрии. Кроме того, в спектре наблюдаются дополнительные особенности: широкая полоса в области частоты 120 см<sup>-1</sup>, полосы при значениях 690 и 750 см<sup>-1</sup>, не принадлежащие фундаментальным колебаниям структуры ниобата лития. В качестве сравнения на рис. 1, *б* приведены спектры КРС конгруэнтного и стехиометрического кристаллов ниобата лития типа II, выращенных из очищенной шихты с контролируемыми примесями, в геометрии рассеяния  $Y(ZZ)\overline{Y}$ , в которой должны наблюдаться фундаментальные колебания  $A_1(TO)$ -типа симметрии.



36





 а — конгруэнтный кристалл ниобата лития типа I; б, в — спектры КРС конгруэнтного (1) и стехиометрического (2) образцов ниобата лития типа II в диапазоне значений частоты 5...800 см<sup>-1</sup> и в низкочастотном диапазоне значений 5...250 см<sup>-1</sup> в масштабе 4:1 по сравнению со спектрами, приведенными на рис. 1, б

Значения частот и полуширин линий, найденные после обработки спектров КРС кристаллов обоих типов, приведены в табл. 1. Данные эксперимента показывают следующее: наблюдается значительное различие значений ширин фундаментальных линий для кристаллов типов I и II, что свидетельствует о разном происхождении шихты, используемой в процессе выращивания. Этот параметр характеризует степень несовершенства, или степень дефектности, образцов. Кроме того, наблюдаемое в спектрах КРС образцов типа I большое число дополнительных линий также свидетельствует о значительной степени дефектности структуры.

### Таблица 1

|                      | Конг             | руэнтный             | Кристалл типа II |                      |                    |                     |
|----------------------|------------------|----------------------|------------------|----------------------|--------------------|---------------------|
|                      | кристалл типа I  |                      | конгруэнтный     |                      | стехиометрический  |                     |
| Мода                 | Частота,         | Полуширина           | Частота,         | Полуширина           | Частота,           | Полуширина          |
|                      | CM <sup>-1</sup> | $\gamma$ , $CM^{-1}$ | $CM^{-1}$        | $\gamma$ , $CM^{-1}$ | $\mathrm{CM}^{-1}$ | γ, cm <sup>-1</sup> |
|                      | I                | $A_1(T)$             | O)-mun cu        | мметрии              | I                  | I                   |
| 1A <sub>1</sub> (TO) | 252              | 36                   | 254              | 30,2                 | 256                | 32                  |
| 2A <sub>1</sub> (TO) | 279              | 17                   | 276              | 12,9                 | 275                | 13,2                |
| 3A <sub>1</sub> (TO) | 335              | 15                   | 333              | 9,8                  | 335                | 11                  |
| $4A_1(TO)$           | 636              | 42                   | 633              | 24,9                 | 630                | 33,4                |
| Е(ТО)-тип симметрии  |                  |                      |                  |                      |                    |                     |
| 1E(TO)               | 153              | 15                   | 151              | 10,6                 | 152                | 11                  |
| 2E(TO)               | 195              | -                    | -                | _                    | 180                | _                   |
| 3E(TO)               | 238              | 13                   | 235              | 11,2                 | 237                | 11,8                |
| 4E(TO)               | 264              | 17                   | 266              | 13,7                 | 262                | 13,7                |
| 5E(TO)               | 326              | 21                   | 320              | 15,6                 | 322                | 16,3                |
| 6E(TO)               | 373              | 32                   | 370              | 25                   | 368                | 26,6                |
| 7E(TO)               | 432              | 16                   | 430              | 13,3                 | 431                | 17                  |
| 8E(TO)               | 580              | 29                   | 581              | 22,6                 | 580                | 23,3                |
| 9E(TO)               | _                | _                    | _                | _                    | 610                | _                   |

## Значения частот и полуширин фундаментальных и дополнительных линий в спектрах КРС кристаллов различного происхождения при температуре 294 К

Отмеченные звездочкой на рис. 1, *а* пики 152, 369 и 432 см<sup>-1</sup> соответствуют фундаментальным колебаниям E(TO)-типа симметрии, проявляющимся в этой геометрии рассеяния вследствие нарушения ориентации кристалла или ориентации поляризатора относительно идеального расположения осей *X*, *Y*, *Z*, а также при возрастании деполяризации рассеянного света в результате несовершенства структуры. Кроме того, в спектре на рис. 1, *а* детектируются линии с частотами 120, 478, 530, 690 и 750 см<sup>-1</sup>, не относящиеся к фундаментальным колебаниям какого-либо разрешенного типа симметрии.

**Обсуждение результатов.** Расчеты в соответствии с первыми принципами динамики решеточных колебаний ниобата лития, выполненные в работах [12–14], не подтверждают близких к указанным частотам фундамен-

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2019. № 2 37

тальных колебаний как разрешенных в спектрах КРС, так и запрещенных типов симметрии, включая колебания А2-типа симметрии. Сравнение кривых, приведенных на рис. 1, а и б, показывает, что в конгруэнтных кристаллах обоих типов присутствует широкая полоса в диапазоне значений частоты 100...120 см<sup>-1</sup>, которая не регистрируется в стехиометрических образцах типа II (рис. 1, в). Регистрация низкочастотных спектров КРС в диапазоне значений температуры 100...440 К не обнаруживает возрастания интенсивности полосы на частоте 120 см<sup>-1</sup>, характерной для спектров второго порядка [15, 16]. В то же время при нагреве конгруэнтных образцов от 400 до 1200 К обнаруживается существенный сдвиг и аномальное уширение низкочастотной моды 274 см<sup>-1</sup>, проходящей через моду 254 см<sup>-1</sup> [17]. При этом полоса в области частоты 120 см<sup>-1</sup> резко возрастает по интенсивности и сливается с крылом линии квазиупругого рассеяния, интенсивность которого также резко увеличивается. Можно предположить, что происхождение полосы в области частоты 120 см<sup>-1</sup> в конгруэнтных образцах связано с плотностью акустических состояний, которая проявляется в спектрах КРС вследствие нарушения правил отбора по волновому вектору, связанному с дефектами стехиометрии. В пользу такого предположения свидетельствует тот факт, что спектральная форма этой полосы меняется в различных геометриях рассеяния, а также то, что при повышении температуры происходит сильное взаимодействие между фундаментальным колебанием 274 см<sup>-1</sup>, проявляющим сдвиг частоты с температурой и полосой. Это приводит к аномальному уширению моды и резкому возрастанию интенсивности полосы. Такое поведение характерно для взаимодействия колебательной моды с двухчастичным колебательным возбуждением — в данном случае плотностью состояний акустических фононов (TA + TA)- или (TA + LA)-ветвей. В работах [18, 19] на основе данных по неупругому рассеянию медленных нейтронов [20] в ниобате лития рассчитана плотность акустических состояний дисперсионных (TA + LA)-ветвей и однофононная спектральная плотность колебаний при условии взаимодействия низкочастотной фундаментальной моды 254 см<sup>-1</sup> с двухфононным акустическим спектром. Расчеты показали хорошее согласие со спектрами КРС первого порядка в ниобате лития при различных значениях температуры.

Происхождение полосы в области 120 см<sup>-1</sup> можно проверить путем наведения такого рода дефектов в процессе выращивания и регистрации спектров КРС на образцах с предварительно измеренными акустическими добротностями.

38 ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2019. № 2

Рис. 2. Низкочастотные спектры КРС образцов ниобата лития $A_1(TO)$ -типа симметрии, полученные в геометрии X(ZZ)Y, при значениях акустической добротности  $1,45 \cdot 10^4$  (1),  $1,17 \cdot 10^4$  (2),  $0,85 \cdot 10^4$  (3),  $0,52 \cdot 10^4$  (4) и  $0,35 \cdot 10^4$  (5)

Низкочастотные спектры КРС образцов ниобата лития типа I при различных значениях акустической добротности, записанные в геометрии рассеяния



X(ZZ)Y, соответствующей колебаниям  $A_1(TO)$ -типа симметрии, приведены на рис. 2. Интенсивность полосы в области частоты 120 см<sup>-1</sup> значительно увеличивается при уменьшении значения добротности от  $1,45 \cdot 10^4$  до  $0,35 \cdot 10^4$ . Рост интенсивности полосы 120 см<sup>-1</sup> коррелирует с уширением линий фундаментальных колебаний 254 и 274 см<sup>-1</sup>. Между интенсивностью рассматриваемой полосы и акустической добротностью существует прямая зависимость: с уменьшением добротности (увеличением акустического поглощения) интенсивность полосы возрастает по логарифмическому закону. Значения добротности образцов и интенсивности полосы приведены ниже:

Добротность Q, 10<sup>4</sup> ...... 0,35 0,52 0,85 1,17 1,45 Интенсивность, отн. ед. ..... 0,71 0,58 0,31 0,24 0,09

Данные, приведенные выше, аппроксимируются линейным законом вида

$$I(Q) = a \log Q + b, \tag{1}$$

где  $a = -0,994 \pm 0,069$ ;  $b = 4,25 \pm 0,27$ . Достоверность аппроксимации составляет 0,98, что соответствует коэффициенту корреляции R = 0,99. Зависимость интенсивности полосы 120 см<sup>-1</sup> от добротности образцов приведена на рис. 3. Преобразованное соотношение (1)

$$Q = C \exp\left(-I / |a|\right), \tag{2}$$

где  $C = \exp(-b/a)$ , в частности, может быть использовано для построения калибровочной кривой определения добротности конгруэнтных образцов ниобата лития по интенсивности низкочастотной линии 120 см<sup>-1</sup>,



Рис. 3. Зависимость интенсивности полосы 120 см<sup>-1</sup> в кристаллах ниобата лития от акустической добротности (штриховой линией показана аппроксимация эмпирических данных (о) линейным законом; штрихпунктирной линией показана зона достоверности аппроксимации параметров полученной зависимости с 95 % вероятностью)

принадлежащей, по-видимому, максимуму плотности акустических состояний. Следует отметить, что при исследовании различных способов выращивания номинально чистых кристаллов ниобата лития [21] обнаружена существенная корреляция между интенсивностью линии на частоте 120 см<sup>-1</sup> в спектрах КРС и молярным составом флюса K<sub>2</sub>O в исходной шихте. Интенсивность полосы 120 см<sup>-1</sup> возрастает пропорционально концентрации дефектов (дислокаций) в соответствии с результатами, приведенными в работах [22, 23].

Результаты настоящей работы показывают, что, во-первых, обсуждаемая линия действительно может являться важным количественным признаком дефектности структуры ниобата лития. Во-вторых, высокая степень корреляции интенсивности линии и акустической добротности образцов указывает на происхождение полосы как особенности плотности акустических состояний, проявляющейся в спектре первого порядка в результате нарушения правил отбора по волновому вектору во все увеличивающейся области зоны Бриллюэна вследствие возрастания плотности дислокаций и увеличения областей искажения идеальной решетки. Проявление акустической плотности состояний в спектрах усиливается в результате взаимодействия фундаментального колебания и двухфононной акустической зоны через затухание. Об этом механизме свидетельствует существенное уширение линий 254 см<sup>-1</sup> и 274 см<sup>-1</sup> фундаментальных колебаний с ростом дефектности кристалла (см. рис. 3) и корреляция этого уширения с интенсивностью полосы 120 см<sup>-1</sup>.

Наряду с особенностями низкочастотных спектров ниобата лития, изучена связь между интенсивностью квазиупругого рассеяния света и дефектностью образцов. Для этого были построены зависимости интенсивности рассеяния света на частотах 70, 50, 40, 30, 20 и 10 см<sup>-1</sup> для образцов с различными добротностями. Все спектры нормировались на

40 ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2019. № 2

уровень возбуждающей линии. Значения интенсивностей при различных значениях частоты в образцах с различными добротностями приведены в табл. 2.

#### Таблица 2

|                   | Частота, см <sup>-1</sup> |      |      |      |      |      |  |
|-------------------|---------------------------|------|------|------|------|------|--|
| дооротность Q, 10 | 70                        | 50   | 40   | 30   | 20   | 10   |  |
| 0,35              | 0,69                      | 0,98 | 1,20 | 1,44 | 1,75 | 2,34 |  |
| 0,52              | 0,50                      | 0,69 | 0,78 | 1,05 | 1,23 | 1,43 |  |
| 0,85              | 0,24                      | 0,26 | 0,37 | 0,46 | 0,53 | 0,61 |  |
| 1,17              | 0,11                      | 0,10 | 0,16 | 0,21 | 0,25 | 0,28 |  |
| 1,45              | 0,05                      | 0,06 | 0,10 | 0,15 | 0,16 | 0,17 |  |

## Значения интенсивности КРС образцов в зависимости от различных значений добротности

Зависимость интенсивности КРС от добротности образцов при различных значениях частоты, приведенных в табл. 2, показана на рис. 4. Аппроксимация эмпирических данных с наибольшей достоверностью описывается экспоненциальным законом вида



$$I(Q) = I_0 + A \exp(-BQ).$$
 (3)

**Рис. 4.** Зависимость интенсивности рассеяния света от добротности конгруэнтных образцов ниобата лития при значениях частоты 70 (1), 50 (2), 40 (3), 30 (4), 20 (5), 10 см<sup>-1</sup> (6) (штрихпунктирными линиями показаны результаты аппроксимации)

Значения параметров аппроксимации с соответствующими погрешностями приведены в табл. 3. Приближение данных по рассеянию также проводилось и степенным законом. Однако достоверность аппроксимации степенным законом ниже, а погрешность определения параметров выше, чем у использованного экспоненциального приближения.

Таблица 3

| Частота, см <sup>-1</sup>                                         | $I_0$                  | So      | A       | S <sub>A</sub> | В      | $S_B$   | D      |
|-------------------------------------------------------------------|------------------------|---------|---------|----------------|--------|---------|--------|
| 70                                                                | -0,05056               | 0,01825 | 1,42127 | 0,03275        | 1,8495 | 0,10756 | 0,9993 |
| 50                                                                | -0,03876               | 0,06084 | 2,33435 | 0,24488        | 2,3288 | 0,38261 | 0,9924 |
| 40                                                                | 0,022                  | 0,02235 | 2,83066 | 0,1154         | 2,5122 | 0,14078 | 0,9990 |
| 30                                                                | -0,01411               | 0,09166 | 3,14233 | 0,28753        | 2,1631 | 0,35597 | 0,9930 |
| 20                                                                | $-2,517 \cdot 10^{-4}$ | 0,06872 | 3,96374 | 0,26891        | 2,3092 | 0,24913 | 0,9968 |
| 10                                                                | 0,08853                | 0,01783 | 6,37468 | 0,15853        | 2,9794 | 0,07856 | 0,9997 |
| Примечание. $S_0, S_A, S_B$ — стандартные ошибки $I_0, A$ и $B$ . |                        |         |         |                |        |         |        |

Параметры аппроксимации экспериментальных данных по соотношению (3)

Следует отметить, что точность аппроксимации возрастает при уменьшении частоты крыла линии Рэлея. Для одноосного сегнетоэлектрика ниобата лития характерны крупномасштабные дефекты: границы зерен, дислокации, линии дислокаций, параллельные оси спонтанной поляризации. Кроме того, при концентрациях дефектов выше некоторой критической, дальнодействующие силы могут приводить к образованию сверхструктуры — упорядочению дефектных областей чаще в направлении оси спонтанной поляризации или близкой к ней. Поэтому естественно ожидать роста интенсивности рассеяния света на низких частотах, где основной вклад дает квазиупругое рассеяние света на крупномасштабных неоднородностях [24]. Возрастание интенсивности квазиупругого рассеяния света с увеличением концентрации дефектов описывалось в модели взаимодействия ангармонического осциллятора через затухание с релаксацией акустических колебаний на дефектах. В этой модели интенсивность квазиупругого рассеяния света выражается соотношением [25, 26]:

 $I(\omega, Q) =$ 

$$= \left[n(\omega,T)+1\right] \frac{\left[\gamma_{0} + \frac{\delta(Q)^{2} \tau(Q)}{1+\omega^{2} \tau(Q)^{2}}\right]\omega}{\left[\omega_{0}^{2} + \delta(Q)^{2} - \omega^{2} - \frac{\delta(Q)^{2}}{1+\omega^{2} \tau(Q)^{2}}\right]^{2} + \omega^{2} \left[\gamma_{0} + \frac{\delta(Q)^{2} \tau(Q)}{1+\omega^{2} \tau(Q)^{2}}\right]^{2}}.$$
 (4)

Здесь  $\omega_0$ ,  $\gamma_0$  — частота и затухание оптической моды 2A<sub>1</sub>(TO)-типа симметрии 274 и 13 см<sup>-1</sup> соответственно; параметр взаимодействия оптической моды с релаксатором на дислокациях  $\delta(Q)$  и время релаксации  $\tau(Q)$ 

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2019. № 2

42

зависят от добротности измеряемых образцов, а следовательно, от концентрации дислокаций. Параметрами аппроксимации интенсивности квазиупругого рассеяния света соотношением (4) при различных значениях добротности образцов были затухание моды  $2A_1(TO)$ -типа симметрии  $\gamma_0$ , параметр связи осциллятора с релаксатором  $\delta(Q)$  и время релаксации  $\tau(Q)$ . Результаты аппроксимации спектров квазиупругого рассеяния света по соотношению (4) приведены на рис. 5, значения параметров аппроксимации спектров квазиупругого рассеяния света — в табл. 4.



**Рис. 5.** Интенсивность КРС в образцах ниобата лития (штриховыми линиями показаны результаты аппроксимации) при различных значениях добротности 0,35·10<sup>-4</sup> (1), 0,52 · 10<sup>-4</sup> (2), 0,85·10<sup>-4</sup> (3), 1,17 · 10<sup>-4</sup> (4) и 1,45 · 10<sup>-4</sup> (5)

Таблица 4

| Добротность<br><i>Q</i> , 10 <sup>-4</sup> | $\omega_0$ , cm <sup>-1</sup> | $\gamma_0$ , cm <sup>-1</sup> | $\delta(Q)$ , см <sup>-1</sup> | τ(Q), см | Коэффициент<br>корреляции |
|--------------------------------------------|-------------------------------|-------------------------------|--------------------------------|----------|---------------------------|
| 1,45                                       | 274                           | -                             | 49,07                          | 0,023    | 0,984                     |
| 1,17                                       | 274                           | 5,52                          | 53,06                          | 0,0236   | 0,995                     |
| 0,85                                       | 274                           | 12,20                         | 81,59                          | 0,025    | 0,998                     |
| 0,52                                       | 274                           | 53,55                         | 117,78                         | 0,028    | 0,998                     |
| 0,35                                       | 274                           | 113,35                        | 142,5                          | 0,031    | 0,994                     |

Параметры, использованные для приближения данных рассеяния по соотношению (4)

Последний столбец табл. 4 содержит значения коэффициентов корреляции между рядами данных эксперимента по КРС в зависимости от частоты и значениями функции в выражении (4). Корреляция между наборами данных очень высока, что указывает на высокую достоверность аппроксимации соотношением (4), которое учитывает взаимодействие оптического фонона с плотностью акустических фононов, активных в спектре в результате нарушения правил отбора по волновому вектору при наличии дислокаций в образцах. Константа взаимодействия между оптическим фононом и релаксацией акустических фононов на дислокациях зависит от плотности дислокаций, поэтому этот параметр зависит от добротности образцов через коэффициент поглощения звука. Тот же механизм лежит в основе зависимости времени релаксации от добротности образцов: с возрастанием плотности дислокаций увеличивается плотность конденсата акустических фононов на дислокациях, в результате эффективная масса дислокационных петель и нитей возрастает, что приводит к росту времени релаксации.

Заключение. Исследованы спектры квазиупругого рассеяния света в конгруэнтных кристаллах ниобата лития с дефектами стехиометрии. Эксперименты проводились на образцах, выращенных при различных скоростях вытягивания; напряжения, возникающие в образцах при таких условиях, приводили к образованию дислокаций с плотностью, пропорциональной скорости вытягивания затравки. Степень дефектности образцов оценивалась по акустической добротности, измеренной резонансным радиотехническим методом. С возрастанием концентрации дефектов (в данном случае дислокаций) происходило существенное уширение линий низкочастотных оптических мод А<sub>1</sub>(TO)-типа симметрии с одновременным возрастанием интенсивности квазиупругого рассеяния света на крыле линии Рэлея. Поведение интенсивности рэлеевского рассеяния на дефектах хорошо описывается в модели взаимодействия квазигармонического осциллятора с затуханием и медленными движениями акустических мод на дефектах с характерным временем релаксации  $\tau(C)$ , где C — концентрация дислокаций. Сила связи между оптической модой и релаксацией акустических фононов на дефектах  $\delta^2(C)$  зависит от концентрации дефектов, и связь между этими возбуждениями происходит через затухание. Хорошее согласие эксперимента с использованной моделью позволило оценить характер зависимости затухания оптического фонона, силу связи и время релаксации от концентрации дефектов: эти величины экспоненциально возрастают при уменьшении акустической добротности (увеличении плотности дислокаций) в образцах.

Высокая чувствительность интенсивности полосы в области 120 см<sup>-1</sup> и квазиупругого рассеяния света от концентрации дефектов могут служить количественными признаками степени дефектности структуры. Квазиупругое и низкочастотное комбинационное рассеяние света...

Причем построение калибровочной кривой для определения добротности при комнатной температуре из спектров рассеяния света можно проводить двумя способами: 1) по интенсивности рассеяния линии резонанса акустических фононов на частоте 120 см<sup>-1</sup> по соотношению (2); 2) по интенсивности квазиупругого рассеяния света на низких частотах по соотношению (3). Таким образом, полученные результаты позволяют по спектрам КРС оценить степень дефектности структуры конгруэнтных кристаллов ниобата лития.

#### Благодарности

Авторы выражают благодарность ведущему научному сотруднику Института химии Кольского научного центра РАН Н.В. Сидорову за полезные обсуждения методов выращивания кристаллов ниобата лития с контролируемыми примесями.

### ЛИТЕРАТУРА

[1] Wong K.K. Properties of lithium niobate. INSPEC, 2002.

[2] Günter P., Huignard J.-P. (eds). Photorefractive materials and their applications 1. *Springer Series in Optical Sciences*, vol. 113. New York, NY, Springer, 2006. DOI: 10.1007/b106782

[3] Volk T., Wöhlecke M. Lithium niobate. Defects, photorefraction, and ferroelectric switching. *Springer Series in Materials Science*, vol. 115. Berlin, Heidelberg, Springer, 2009. DOI: https://doi.org/10.1007/978-3-540-70766-0

[4] Сидоров Н.В., Волк Т.Р., Маврин Б.Н. и др. Ниобат лития: дефекты, фоторефракция, колебательный спектр, поляритоны. М., Наука, 2003.

[5] Владимирцев Ю.В., Голенищев-Кутузов В.А. Индуцированное светом изменение скорости ультразвуковых волн в ниобате лития. *ФТТ*, 1980, т. 22, № 1, с. 217–218.

[6] Golenishchev-Kutuzov V.A., Glebova N.N., Migachev S.A., et al. Contribution of paramagnetic ions to acoustic and optical properties of ferroelectrics. *Ferroelectrics*, 1985, vol. 64, no. 1, pp. 209–214. DOI: 10.1080/00150198508018722

[7] Li-jie, Dransfeld K. The effect of laser illumination on the propagation of ultrasonic waves in single crystalline lithium niobate. *Condensed Matter.*, 1987, vol. 68, iss. 2, pp. 169–174. DOI: 10.1007/BF01304222

[8] Akhmedzhanov F., Juraev F. Attenuation of acoustic waves in lithium niobate crystals with impurities. Attenuation of acoustic waves in lithium niobatecrystals with impurities. *Proc. Acoustics 2012 Nantes Conf.*, 2012. Art. hal-00811325.

[9] Кузьминов Ю.С. Электрооптический и нелинейно-оптический кристалл ниобата лития. М., Наука, 1987.

[10] Сидоров Н.В., Теплякова Н.А., Яничев А.А. и др. Особенности структуры и оптические свойства кристаллов LiNbO<sub>3</sub>:ZnO (3.43–5.84 мол. %). *Неорганические материалы*, 2017, т. 53, № 5, с. 1–7.

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2019. № 2

[11] Гилсон Т., Хендра П. Лазерная спектроскопия КР в химии. М., Мир, 1973.

[12] Chaplot S.L., Rao R.K. Lattice dynamics of LiNbO3 and KNbO3. J. Phys. C: Solid State Phys., 1980, vol. 13, no. 5, pp. 747-756. DOI: 10.1088/0022-3719/13/5/007

[13] Parlinski K., Li Z.Q., Kawazoe Y. Ab initio calculations of phonons in LiNbO3. Phys. Rev. B, 2000, vol. 61, iss. 1, pp. 272–278. DOI: 10.1103/PhysRevB.61.272

[14] Caciuc V., Postnikov A.V., Borstel G. Ab initio structure and zone-center phonons in LiNbO<sub>3</sub>. Phys. Rev. B, 2000, vol. 61, iss. 13, pp. 8806-8813.

DOI: 10.1103/PhysRevB.61.8806

[15] Суровцев Н.В., Малиновский В.К., Пугачев А.М. и др. Природа низкочастотного комбинационного рассеяния света в конгруэнтных кристаллах ниобата лития. ФТТ, 2003, т. 45, № 3, с. 505–512.

[16] Сидоров Н.В., Крук А.А., Яничев А.А. и др. Температурные исследования спектров комбинационного рассеяния света стехиометрического и конгруэнтного кристаллов ниобата лития. Оптика и спектроскопия, 2014, т. 117, № 4, с. 577-589. DOI: 10.7868/S0030403414100201

[17] Okamoto Y., Wang Pin-chu, Scott J.F. Analysis of quasielastic light scattering in LiNbO<sub>3</sub> near *T<sub>C</sub>*. *Phys. Rev. B*, 1985, vol. 32, iss. 10, pp. 6787–6792. DOI: 10.1103/PhysRevB.32.6787

[18] Аникьев А.А., Горелик В.С., Умаров Б.С. Комбинационное рассеяние света на акустических бифононах в ниобате лития. Препринт ФИАН СССР, 1984, № 154.

[19] Аникьев А.А. Плотность одно- и двухчастичных состояний в кристаллах ниобата лития. Инженерный журнал. Наука и инновации, 2013, № 7 (19). DOI: 10.18698/2308-6033-2013-7-837

[20] Chowdhury N.R., Peckham J.E., Saunderson D.H. A neutron inelastic scattering study of LiNbO3. J. Phys. C: Solid State Phys., 1978, vol. 11, no. 8, pp. 1671-1684. DOI: 10.1088/0022-3719/11/8/029

[21] Сидоров Н.В., Яничев А.А., Палатников М.Н. и др. Эффекты упорядочения структурных единиц катионной подрешетки кристаллов LiNbO3:Zn и их проявление в спектре комбинационного рассеяния света. Оптика и спектроскопия, 2014, т. 116, № 2, с. 306–315.

[22] Сидоров Н.В., Палатников М.Н. Спектры комбинационного рассеяния света сильно легированных магнием и цинком кристаллов ниобата лития. Оптика и спектроскопия, 2016, т. 121, № 6, с. 907–915.

[23] Кривоглаз М.А. Теория рассеяния рентгеновских лучей и тепловых нейтронов в неидеальных кристаллах. М., Наука, 1967.

[24] Jäckle J. Low frequency Raman scattering in glasses. In: Phillips W.A. (eds). Amorphous solids: low-temperature properties. Topics in Current Physics, vol. 24, pp. 135–160. Berlin, Heidelberg, Springer, 1981. DOI: https://doi.org/10.1007/978-3-642-81534-8\_8

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2019. № 2

Квазиупругое и низкочастотное комбинационное рассеяние света...

[25] Feder J. Local properties at phase transition. North-Holland, 1976.

[26] Bruce A.D., Cowley R.A. Structural phase transitions III. Critical dynamics and quasi-elastic scattering. Adv. Phys., 1980, vol. 29, no. 1, pp. 219-321. DOI: 10.1088/0022-3719/16/21/012

Аникьев Анатолий Анатольевич — д-р физ.-мат. наук, профессор кафедры «Лазерные и оптико-электронные приборы и системы» МГТУ им. Н.Э. Баумана (Российская Федерация, 105005, Москва, 2-я Бауманская ул., д. 5, стр. 1).

Умаров Максуджон Файзулоевич — д-р физ.-мат. наук, профессор кафедры биомедицинской техники ВоГУ (Российская Федерация, 160000, Вологда, ул. Ленина, д. 15).

Аникьева Эмилия Николаевна — старший преподаватель кафедры математики, физики и информационных технологий Мичуринского ГАУ (Российская Федерация, 393760, Тамбовская обл., Мичуринск, ул. Интернациональная, д. 101).

#### Просьба ссылаться на эту статью следующим образом:

Аникьев А.А., Умаров М.Ф., Аникьева Э.Н. Квазиупругое и низкочастотное комбинационное рассеяние света в кристаллах ниобата лития с дефектами стехиометрии. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2019, № 2, с. 32-50. DOI: 10.18698/1812-3368-2019-2-32-50

## **QUASIELASTIC AND LOW-FREQUENCY RAMAN LIGHT** SCATTERING IN LITHIUM NIOBATE CRYSTALS WITH STOICHIOMETRIC DEFECTS

| A.A. Anikiev <sup>1</sup>  | aaanikyev@mail.ru  |
|----------------------------|--------------------|
| M.F. Umarov <sup>2</sup>   | umma54@rambler.ru  |
| E.N. Anikieva <sup>3</sup> | korol_0909@mail.ru |

<sup>1</sup>Bauman Moscow State Technical University, Moscow, Russian Federation <sup>2</sup>Vologda State University, Vologda, Russian Federation <sup>3</sup>Michurinsk State Agrarian University, Michurinsk, Tambov Region, **Russian Federation** 

| Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Keywords                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| The paper investigates quasielastic light scattering spectra at a temperature of 296 K in lithium niobate samples of various degrees of imperfection as measured by means of the acoustic quality factor. We performed a quantitative spectrum analysis in the $0-70 \text{ cm}^{-1}$ frequency range for samples with different <i>Q</i> -factor values in a model accounting for the connection between a low-frequency optical mode of the A <sub>1</sub> (TO) | Dislocations, acoustic quality<br>factor, Raman light scattering,<br>lithium niobate, stoichiometry |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                     |

| symmetry type and the acoustic density of states           |                     |
|------------------------------------------------------------|---------------------|
| observed in a spectrum as a result of violating the        |                     |
| wavevector selection rule in a stoichiometrically de-      |                     |
| fective crystal. The results of comparing these simu-      |                     |
| lations to experimental data show that stoichiometrical    |                     |
| defects significantly contribute to the quasielastic light | Received 17.04.2018 |
| scattering intensity in congruent lithium niobate crystals | © Author(s), 2019   |

## REFERENCES

[1] Wong K.K. Properties of lithium niobate. INSPEC, 2002.

[2] Günter P., Huignard J.-P. (eds). Photorefractive materials and their applications 1. *Springer Series in Optical Sciences*, vol. 113. New York, NY, Springer, 2006. DOI: 10.1007/b106782

[3] Volk T., Wöhlecke M. Lithium niobate. Defects, photorefraction, and ferroelectric switching. *Springer Series in Materials Science*, vol. 115. Berlin, Heidelberg, Springer, 2009. DOI: https://doi.org/10.1007/978-3-540-70766-0

[4] Sidorov N.V., Volk T.R., Mavrin B.N., et al. Niobat litiya: defekty, fotorefraktsiya, kolebatel'nyy spektr, polyaritony [Lithium niobate: defects, photorefraction, vibration spectrum, polaritons]. Moscow, Nauka Publ., 2003.

[5] Vladimirtsev Yu.V., Golenishchev-Kutuzov V.A. Change of ultrasound waves speed in lithium niobate, induced by light. *FTT*, 1980, vol. 22, no. 1, pp. 217–218 (in Russ.).

[6] Golenishchev-Kutuzov V.A., Glebova N.N., Migachev S.A., et al. Contribution of paramagnetic ions to acoustic and optical properties of ferroelectrics. *Ferroelectrics*, 1985, vol. 64, no. 1, pp. 209–214. DOI: 10.1080/00150198508018722

[7] Li-jie, Dransfeld K. The effect of laser illumination on the propagation of ultrasonic waves in single crystalline lithium niobate. *Condensed Matter.*, 1987, vol. 68, iss. 2, pp. 169–174. DOI: 10.1007/BF01304222

[8] Akhmedzhanov F., Juraev F. Attenuation of acoustic waves in lithium niobate crystals with impurities. Attenuation of acoustic waves in lithium niobatecrystals with impurities. *Proc. Acoustics 2012 Nantes Conf.*, 2012. Art. hal-00811325.

[9] Kuzminov Yu.S. Elektroopticheskiy i nelineyno-opticheskiy kristall niobata litiya [Electro-optical and nonlinear optical crystal lithium niobate]. Moscow, Nauka Publ., 1987.

[10] Sidorov N.V., Teplyakova N.A., Yanichev A.A., et al. Structure and optical properties of LiNbO<sub>3</sub>:ZnO (3.43–5.84 mol %) crystals. *Inorg. Mater.*, 2017, vol. 53, iss. 5, pp. 489–495. DOI: 10.1134/S002016851705017X

[11] Gilson T.R., Hendra P.J. Laser Raman spectroscopy. Wiley, 1970.

[12] Chaplot S.L., Rao K.R. Lattice dynamics of LiNbO<sub>3</sub> and KNbO<sub>3</sub>. *J. Phys. C: Solid State Phys.*, 1980, vol. 13, no. 5, pp. 747–756. DOI: 10.1088/0022-3719/13/5/007

[13] Parlinski K., Li Z.Q., Kawazoe Y. Ab initio calculations of phonons in LiNbO<sub>3</sub>. *Phys. Rev. B*, 2000, vol. 61, iss. 1, pp. 272–278. DOI: 10.1103/PhysRevB.61.272

Квазиупругое и низкочастотное комбинационное рассеяние света...

[14] Caciuc V., Postnikov A.V., Borstel G. Ab initio structure and zone-center phonons in LiNbO<sub>3</sub>. *Phys. Rev. B*, 2000, vol. 61, iss. 13, pp. 8806–8813.
DOI: 10.1103/PhysRevB.61.8806

[15] Surovtsev N.V., Malinovskii V.K., Pugachev A.M., et al. The nature of low-frequency Raman scattering in congruent melting crystals of lithium niobate. *Phys. Solid State*, 2003, vol. 45, iss. 3, pp. 534–541. DOI: 10.1134/1.1562243

[16] Sidorov N.V., Kruk A.A., Yanichev A.A., et al. Temperature investigations of Raman spectra of stoichiometric and congruent lithium niobate crystals. *Opt. Spectrosc.*, 2014, vol. 117, iss. 4, pp. 560–571. DOI: 10.1134/S0030400X14100208

[17] Okamoto Y., Wang Pin-chu, Scott J.F. Analysis of quasielastic light scattering in  $LiNbO_3$  near  $T_c$ . *Phys. Rev. B*, 1985, vol. 32, iss. 10, pp. 6787–6792. DOI: 10.1103/PhysRevB.32.6787

[18] Anikiev A.A., Gorelik V.S., Umarov B.S. Combined light scattering on acoustic biphonons in lithium niobate. *Preprint FIAN SSSR*, 1984, no. 154 (in Russ.).

[19] Anikjev A.A. One- and two-phonon density of states in lithium niobate crystals. *Inzhenernyy zhurnal: nauka i innovatsii* [Engineering Journal: Science and Innovation], 2013, no. 7 (19) (in Russ.). DOI: 10.18698/2308-6033-2013-7-837

[20] Chowdhury N.R., Peckham J.E., Saunderson D.H. A neutron inelastic scattering study of LiNbO<sub>3</sub>. *J. Phys. C: Solid State Phys.*, 1978, vol. 11, no. 8, pp. 1671–1684. DOI: 10.1088/0022-3719/11/8/029

[21] Sidorov N.V., Yanichev A.A., Palatnikov M.N., et al. Effects of the ordering of structural units of the cationic sublattice of LiNbO<sub>3</sub>:Zn crystals and their manifestation in Raman spectra. *Opt. Spectrosc.*, 2014, vol. 116, iss. 2, pp. 281–290. DOI: 10.1134/S0030400X14010202

[22] Sidorov N.V., Palatnikov M.N. Raman spectra of lithium niobate crystals heavily doped with zinc and magnesium. *Opt. Spectrosc.*, 2016, vol. 121, iss. 6, pp. 842–850. DOI: 10.1134/S0030400X16120225

[23] Krivoglaz M.A. Teoriya rasseyaniya rentgenovskikh luchey i teplovykh neytronov v neideal'nykh kristallakh [X-ray and thermal neutrons scattering theory in imperfect crystals]. Moscow, Nauka Publ., 1967.

[24] Jäckle J. Low frequency Raman scattering in glasses. In: Phillips W.A. (eds). *Amorphous solids: low-temperature properties. Topics in Current Physics*, vol. 24, pp. 135–160. Berlin, Heidelberg, Springer, 1981. DOI: https://doi.org/10.1007/978-3-642-81534-8\_8

[25] Feder J. Local properties at phase transition. North-Holland, 1976.

[26] Bruce A.D., Cowley R.A. Structural phase transitions III. Critical dynamics and quasi-elastic scattering. *Adv. Phys.*, 1980, vol. 29, no. 1, pp. 219–321. DOI: 10.1088/0022-3719/16/21/012

Anikiev A.A. — Dr. Sc. (Phys.-Math.), Professor, Department of Laser and Optoelectronic Instruments and Systems, Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, str. 1, Moscow, 105005 Russian Federation).

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2019. № 2

**Umarov M.F.** — Dr. Sc. (Phys.-Math.), Professor, Department of Biomedical Engineering, Vologda State University (Lenina ul. 15, Vologda, 160000 Russian Federation).

**Anikieva E.N.** — Assist. Professor, Department of Mathematics, Physics and Computer Science, Michurinsk State Agrarian University (Internatsionalnaya ul. 101, Michurinsk, Tambov Region, 393760 Russian Federation).

### Please cite this article in English as:

Anikiev A.A., Umarov M.F., Anikieva E.N. Quasielastic and low-frequency Raman light scattering in lithium niobate crystals with stoichiometric defects. *Herald of the Bauman Moscow State Technical University, Series Natural Sciences*, 2019, no. 2, pp. 32–50 (in Russ.). DOI: 10.18698/1812-3368-2019-2-32-50



В Издательстве МГТУ им. Н.Э. Баумана вышел в свет учебник авторов

А.А. Гурова, П.В. Слитикова, Ж.Н. Медных

### «Химия: теория и практика. Металлы и сплавы»

Учебник является оригинальным изданием и не имеет аналогов среди литературы по химии, использующейся в учебном процессе технических университетов и вузов. По содержанию и структуре книга представляет собой совокупность учебника и практикума и состоит из трех разделов. Первый посвящен современным вопросам классификации, строения, получения и очистки металлов. Во втором разделе рассмотрены основные физические и химические свойства металлов. Третий раздел содержит материал, охватывающий сплавы и растворы в металлических системах.

Учебник соответствует государственному образовательному стандарту по химии для технических направлений и специальностей и предназначен для студентов 1-3-го курсов.

#### По вопросам приобретения обращайтесь:

105005, Москва, 2-я Бауманская ул., д. 5, стр. 1 +7 (499) 263-60-45 press@bmstu.ru http://baumanpress.ru