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Abstract Keywords 
Grid generation techniques have contributed signifi-
cantly toward the application of mathematical modeling 
in large-scale engineering problems. The structured 
grids have the advantage that very robust and parallel 
computational algorithms have been proposed for  
solving (initial-)boundary value problems. Orthogonal 
grids make it possible to simplify an approximation of 
the differential equations and to increase computation 
accuracy. Opportunity of the orthogonal structured  
grid generation for solving two- and three-dimensional  
(initial-)boundary value problems is analyzed in 
the article in assumption that isolines or isosurfaces  
of d (=2,3)  functions form this grid. Condition of  
the isolines/isosurfaces orthogonality is used for formu-
lation of the boundary value problems, the solutions  
of which will be form the orthogonal grid.  A differential 
substitution is proposed to formulate the boundary 
value problems directly from the orthogonality condi-
tion of the grid. The substitution leads to the general 
partial differrential equations with undetermined  
coefficients. In the two-dimensional case, it is shown 
that the orthogonal grid generation is equivalent to 
the solution of partial differential equations of either 
elliptic or hyperbolic type. In three-dimensional  
domains, an orthogonal grid can be generated only  
in special cases. The obtained results are useful for 
mathematical modeling of the complex physicochemical 
processes in the technical devices 
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Introduction. The rapid development of computers and mathematical model- 
ing methods had a strong influence on mechanical engineering: a significant 
amount of experimental research in the new technology development can be 
replaced by mathematical modeling results. This significantly reduces the time 
and cost of research and development work. However, in the early 1990s,  
it became clear that the greatest effect from the use of mathematical modeling 
methods in mechanical engineering was achieved using specialized software 
built on the ''black box'' principle. The user of such software is busy only with 
setting the task (i.e., setting the geometry region, initial and boundary condi-
tions, choosing materials and equations describing processes, etc.) analyzing 
the results, and computational experiment details are not available to him. 
Software packages, arranged according to the ''black box'' principle, are 
a powerful tool in the hands of an engineer that will allow him to concentrate 
on optimizing work processes occurring in developed technical devices, rather 
than wasting time writing and debugging computer programs. 

All the problems associated with the creation of modern mathematical 
modeling software can be divided into three groups: 1) ''physical''; 2) "mathe-
matical"; 3) "computer". ''Physical'' problems are associated with the mathe-
matical description difficulty of complex physicochemical processes, such as 
hydrodynamics and heat and mass transfer processes in multiphase reactive 
media, turbulent transfer, etc. ''Computer'' problems arise due to compatibility 
difficulties of various and quickly updated software and hardware, and ''mathe-
matical'' problems are associated with the formalizing complexity of computa-
tional experiment main stages: building a computational grid, approximating 
the fundamental (non-)linear (integro-)differential equations and the effective 
solution of ill-conditioned systems of high order linear algebraic equations  
on a sequential or parallel computer. The complexity of ''physical'' problems  
is due to the diversity of the processes being modeled and their mathematical 
description depth, the ''mathematical'' problems are the result of insufficient 
knowledge of the underlying (non-)linear (integro-)differential equations and 
insufficiently developed methods for the numerical solution of mathematical 
physics equations. 

Currently, several software packages, such as STAR-CD, CFX, FLUENT, 
PHOENICS, SIGMAFLOW and mesh generators, such as ICEM CFD, Gambit, 
NETGEN, etc., are developed and widely used for engineering calculations. 
The listed programs are still very far from perfect, although they can significantly 
reduce the mathematical modeling disadvantages. 

Computational grid characteristics strongly influence the computation time 
and the obtained solution accuracy. On the one hand, in a region with a comp-
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lex geometry, it is easier to construct an unstructured grid, but it is more difficult 
to solve grid equations (in modern packages algebraic multigrid methods  
are most often used [1], which do not use information about the grid).  
On the other hand, it is more difficult to construct a regular grid in the same  
area, but it is easier to solve grid equations (for example, to apply geometric 
multigrid methods [1] that use grid information). In modern software pack- 
ages, it is often the grid type that determines the choice of an iterative method  
for solving (linearized) grid equations obtained as a result of approximation  
of the original (non)linear (integro-)differential equations of a mathematical 
model. 

Previously it was assumed that the Seidel method is completely unsuitable 
for numerical solution of boundary value problems, since it requires performing 

2( )O N  arithmetic operations in the two-dimensional case, where N is the num-
ber of unknowns vector components of the resulting linear algebraic equations 
system (for a single equation, N is the number of grid nodes) [2]. The use of up-
per relaxation method makes it possible to reduce arithmetic operations cost  
to 3/2( )O N  arithmetic operations [2], however, the problem of finding the rela-
xation parameter optimal value immediately arises [3]. The complexity of classi-
cal multigrid methods is even lower. These methods cannot be represented as 
a unified algorithm, but with optimal adaptation of their problem-dependent 
components, have a minimal (unimprovable) complexity ( )O N of arithmetic 
operations. In other words, the lower the computational algorithm complexity, 
the lower the computation formalization level and the more difficult it is to use 
such an algorithm in software built on the ''black box'' principle. It is obvious that 
the fundamental idea of the first multigrid algorithm author, R.P. Fedorenko, 
described in [4], has a powerful potential, but the classical multigrid methods  
in their present form are difficult to use in ''black box'' software, due to problems 
associated with optimizing their problem-dependent components. In addition, 
the classical multigrid methods do not allow to effectively parallelizing smo-
othing iterations, especially on coarse grids [1]. 

In the early 1990s, it was done the attempt to realize a different form  
of R.P. Fedorenko fundamental idea, for this purpose, the basic multigrid prin-
ciple was used in the single-mesh algorithm [5−7]. The developed iterative me-
thod for the numerical solution of boundary value problems is called robust mul-
tigrid technique (RMT). It was shown that if the computational grid is structured 
(that is, regular, but generating a special sequence of subgrids — a multigrid 
structure), the complexity of the Seidel method can be reduced to ( lg )O N N  
arithmetic operations without involving problem-dependent components. In ad-
dition, it was shown in [5, 6, 8], that the maximum parallelization efficiency  
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(as compared to an unimproved sequential algorithm, which has the complexity 
of ( )O N  arithmetic operations) will be independent of the number of processors 
used. Thus, RMT has a minimum of problem-dependent components, such as 
the Seidel single-grid method (criterion for stopping iterations, the lower relaxa-
tion parameter for nonlinear problems and the ordering of unknowns for aniso-
tropic problems), and close to the optimal ( lg )O N N  arithmetic operations 
comparable to the classical multigrid methods. The most serious limitation for 
RMT is the structured computational grid requirement. 

Currently, there are many ways to build grids, but all known grid generation  
algorithms have a low level of formalization and parallelism, and, as a rule, re-
quire expert evaluation of the built mesh quality [9, 10]. Often the grid should be 
changed in the process of solving mathematical model equations, adapting 
to the features of the solution and (or) changing the region. The development of 
a robust  algorithm for constructing adaptive grids in multiply connected areas is 
one of the key problems of the mathematical apparatus for modern software tools 
designed to solve engineering problems. 

In terms of practical application, the key problem is the development  
of a robust  structured grids generator in areas with complex geometry, which can 
later be used to numerically solve boundary and initial-boundary problems with 
the help of RMT. Of particular theoretical and practical interest are orthogonal 
grids, which make it possible to significantly simplify the approximation  
of the original (non)linear (integro-)differential equations of a mathematical 
model. 

The purpose of this work is to study the possibility of constructing  
orthogonal computational grids in two- and three-dimensional areas. 

Governing equations for orthogonal computational grids. Consider 
the three-dimensional case and assume that the computational grid is formed by 
isosurfaces ( , , ) const, ( , , ) constU x y z V x y z  and ( , , ) const,W x y z  where 

,U V  and W are some functions. Let 0 0 0( , , )x y z be some intersection point of 
three isosurfaces. We construct tangent planes to isosurfaces ( , , ) const,U x y z  

( , , ) constV x y z  and ( , , ) const,W x y z at a point 0 0 0( , , )x y z and require that 
these planes be mutually perpendicular. Due to the fact that the point 0 0 0( , , )x y z
is chosen arbitrarily, the condition of mutual perpendicularity of the tangent 
planes will take the form  

 0;x x y y z zU V U V U V  (1a) 
 0;x x y y z zV W V W V W  (1b) 
 0.x x y y z zW U W U W U  (1c) 
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A computational grid, formed by isosurfaces ( , , ) const,U x y z ( , , )V x y z
const and ( , , ) const,W x y z is called orthogonal if the functions ,U V  and 

W  satisfy the orthogonality condition (1a)−(1c). The task is to build such 
a system of differential equations, the solution of which are functions ,U V  and 
W satisfying the orthogonality condition (1a)−(1c). Then the generation of an 
orthogonal grid in a certain region will be reduced to the solution of this  
system and the construction of isosurfaces ( , , ) const,U x y z ( , , ) constV x y z
and ( , , ) const.W x y z  

We represent functions ,U V  and W in the form  

 11 12 13 11 12x y z x yU a a a b b  
 13 11 12 13 ;z x y zb c c c  (2a) 

  21 22 23 21 22x y z x yV a a a b b   
 23 21 22 23 ;z x y zb c c c   (2b) 

 31 32 33 31 32x y z x yW a a a b b  

 33 31 32 33 ,z x y zb c c c  (2c) 

where , , , , 1, 2, 3,ij ij ija b c i j  are some coefficients; ,  and are some  
functions. For convenience of transformations, we introduce the notation 
 1 2 3, , ,x y z  
 1 2 3, , .U V W  

Then equations (2a)−(2c) take the form 

 
3

1
, 1, 2,3,n n ni in in in

n
a b c i   (3) 

i.e., values i = 1, 2, 3 correspond equations (2a), (2b) and (2c). Differentiation  
of (3) leads to 

 
3

1
, , 1, 2, 3;n k n k n kki in in in

n
a b c i k  

 
3

1
, , 1, 2, 3.l k l k l kkj jl jl jl

l
a b c j k  

Taking into account the accepted notation, the condition of the grid  
orthogonality (1) takes the form 
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3 3

1 , , 1
0 n k l k n k l kk k

n k l k n k l k n k l k

i j in jl in jl
k k n l

in jl jl in in jl

a a a b

a c a b b b
  

 n k l k n k l kin jl jl inb c a c    

 ,n k l k n k l kjl in in jlb c c c   (4) 

where 1, 2i j  correspond to (1a), 2, 3i j  correspond to (1b) and 
3, 1i j  correspond to (1c). In view of the identity 

3 3

, 1 , 1
3

, 1

n k l k n k l k

n k l k

in jl jl in
n l n l

in jl jn il
n l

a b a b

a b a b
 

individual terms in (4) can be combined, then 

 

3

, , 1
0 n k l k n k l k

n k l k n k l k

in jl in jl jn il
k n l

in jl jn il in jl

a a a b a b

a c a c b b
  

 .n k l k n k l kin jl jn il in jlb c b c c c  (5) 

Now we transform the "diagonal" terms in (5): 

 
3 3 2

, , 1 , 1
n k l k m kin jl im jm

k n l k m
a a a a  

 
3 2 3

1 1 1
;n k l kin jl il jn

k n l n
a a a a  (6a) 

3 3 2

, , 1 , 1
n k l k m kin jl im jm

k n l k m
b b b b  

 
3 2 3

1 1 1
;n k l kin jl il jn

k n l n
b b b b   (6b) 

 
3 3 2

, , 1 , 1
n k l k m kin jl im jm

k n l k m
c c c c   

 
3 2 3

1 1 1
.n k l kin jl il jn

k n l n
c c c c  (6c) 
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We note that the first terms in the right-hand side of (6a)−(6c) can be con-
verted as follows: 

 
3 32 2

, 1 1
m k k kim jm ik jk

k m k
a a a a   

 
2 3 2

1 1
;l kin jn il jl

n l n
a a a a  (7a) 

 
3 32 2

, 1 1
m k k kim jm ik jk

k m k
b b b b   

 
2 3 2

1 1
;l kin jn il jl

n l n
b b b b  (7b) 

 
3 32 2

, 1 1
m k k kim jm ik jk

k m k
c c c c  

 
2 3 2

1 1
.l kin jn il jl

n l n
c c c c   (7c) 

Substituting (7a)−(7c) into (6a)−(6c), and (6a)−(6c) into (5), we obtain 
the final equation 

 

3 2 32 2

1 1 1
3 2 3

1 1 1
3 2 32 2

1 1 1
3 2 3

1 1 1

0 k k l n

n k l k

k k l n

n k l

ik jk in jn il jl
k n l n

in jl il jn
k n l n

ik jk in jn il jl
k n l n

in jl il jn
k n l n

a a a a a a

a a a a

b b b b b b

b b b b
3 2

1
2 3 3 2 32

1 1 1 1 1
3

, , 1

k k k

l n n k l k

n k l k n k l k

ik jk
k

in jn il jl in jl il jn
n l n k n l n

in jl jn il in jl jn il
k n l

c c

c c c c c c c c

a b a b a c a c

  

 .n k l kin jl jn ilb c b c  (8) 
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Recall that expression (8) contains 27 indefinite coefficients by choosing 
which properly this equation can be significantly simplified. Next, we consider 
the two- and three-dimensional cases. 

2D orthogonal grids. The two-dimensional case matches the set 1,i  
2,j  0  and ( ) 0.z  Then (8) is reduced to  

 

2 22
11 21 12 22 11 21 12 22

11 22 12 21 11 22 12 21

( )
( ) ( ) 0.

xx yy xy

xx xy xy yy

a a a a a a a a
a a a a a a a a  

We assume 11 12 21 22 1,a a a a  we arrive at the following statement. 
Statement 1. Let the function ( , )x y satisfies equality 

 22 .xx yy   (9) 

Then the isolines of the functionsU  and ,V defined as 

 ;x yU   (10) 

 ,x yV   (11) 

form an orthogonal grid. 

As 220 ,xx yy xx yy xx yy  two special cases are 
possible. 

Statement 2. Let the function ( , )x y satisfy the Laplace equation  

 0.xx yy   (12) 

Then the isolines of the functions U and V  defined as (10) and (11) form an 
orthogonal grid, and these functions satisfy the Laplace equation and the Cauchy — 
Riemann conditions.  

◀ From (10) and (11) follows  
 2 ;xU V   (13) 
 2 .yU V   (14) 

Differentiating (13) by x and differentiating (14) by y then summing them 
up considering (12), we get 

 2 0.x x y y xx yyU V U V   (15) 

Likewise differentiating (13) by y and differentiating (14) by x and taking 
into account the theorem on independence of a mixed derivative of the differ-
entiation order, we obtain 
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 .y y x xU V U V   (16) 

Summation and subtraction (15) and (16) leads to the Cauchy — Riemann 
conditions 0x yU V  and 0,y xU V  which lead to the Laplace equations 

0xx yyU U  and 0.xx yyV V  In this case, a general view of the func- 
tions U  and V  is 1 2( , ) ( ) ( )U x y f x iy f x iy   and 1( , ) ( )V x y g x iy

2( ).g x iy ▶ 
Statement 3. Let a function ( , )x y satisfy an equation of hyperbolic type 

 0.xx yy   (17) 

Then the isolines of the functions U and V, defined as (10) and (11) form an 
orthogonal grid, and the functions satisfy an equation of hyperbolic type. 

◀ Analogically the differentiating (13) and (14) based on (17) leads  
to 0x yU U  and 0,x yV V  which implies that 0xx yyU U  and 

0.xx yyV V  In this case, a general view of the functions U  and V  is ( , )U x y  
1 2( ) ( )f x y f x y  and 1 2( , ) ( ) ( ).V x y g x y g x y  ▶ 
In the two-dimensional case, orthogonal grids are most often constructed 

using the Laplace equations, and the grid is thickened by the appropriate con-
struction of contour lines. 

3D orthogonal grids. Let us return to (8) and analyze the possibility of or-
thogonal grids constructing in the three-dimensional case. At first, we require 
that 0ik jka a  at 0.in jn il jla a a a  We have previously considered two-dimen-
sional grids as a special case of three-dimensional grids. Now three-dimensional 
grids will be considered as a generalization of two-dimensional grids, i.e.,  
we assume that some of the coefficients are already known from the analysis  
of the two-dimensional case, in particular 11 12 21 22 1.a a a a  Taking into 
account the symmetry of the transformations, expressions (2a)−(2c) take 
the form 

 
13 11 12 13 12

23 21 21 22 23

31 32 33 31 32

;
;
.

x y z x y z x y z

x y z x y z x y z

x y z x y z x y z

U a b b b c
V a b c c c
W a a a b c

 

Condition 0in jn il jla a a a  for 1, 2i j  (i.e., equation (1a)) takes 
the form 
 11 21 12 22 0, 1, 2;a a a a n l  
 11 21 13 23 0, 1, 3;a a a a n l  
 12 22 13 23 0, 2, 3.a a a a n l  
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If 11 12 21 22 1,a a a a  then the second and third equations are  
incompatible. It follows that the grid will be orthogonal only when 0.z  
Further, it follows from (1b) that 31 32 0,a a  i.e., the equations describing 
a three-dimensional orthogonal grid are  

 
( , ) ;
( , ) ;
( ) ( ).

x y

x y

U x y
V x y
W z z

 

Thus, in the three-dimensional case, an orthogonal grid can be construc-
ted only in special cases: 

1) if a three-dimensional region is formed by the movement of a certain sur-
face along a guideline ( )z with preservation of the condition 0.z  We can 
give the following example: orthogonal grids in the simplest bodies — parallele-
piped, cylinder, etc.; 

2) if the three-dimensional region is axisymmetric, that is, it is formed by  
rotating the two-dimensional region. 

Conclusion. It is shown that there are two methods for constructing  
orthogonal grids (based on partial differential equations of elliptic and hyperbolic 
type or in an equivalent formulation related to minimizing the functional) in  
two-dimensional domains and two particular cases (displacement and rotation  
of an orthogonal two-dimensional mesh) in three-dimensional domains. Equa-
tion (8) can also be used to construct structured grids that are close to orthogonal. 
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