УДК 531.66

ОБОБЩЕННАЯ МОДЕЛЬ УДАРА ГЕРЦА — ХАНТА — КРОССЛИ

Г.К. Боровин¹ В.В. Лапшин² borovin@keldysh.ru lapshin032@bmstu.ru

¹ ИПМ им. М.В. Келдыша РАН, Москва, Российская Федерация ² МГТУ им. Н.Э. Баумана, Москва, Российская Федерация

Аннотация	Ключевые слова
Рассмотрена нелинейная вязкоупругопластическая мо-	Коллинеарный удар, коэффициент
дель коллинеарного удара тела о неподвижное препят-	восстановления, нелинейная
ствие, построенная на основе моделей удара Герца и	динамика
Ханта — Кроссли. Показано, что в зависимости от значе-	
ний параметров модели возможен упругий и абсолютно	
неупругий удары. Получены первые интегралы уравнений	
движения в фазах деформации и восстановления, а также	
решение уравнений движения тела в квадратурах. Опре-	
делены коэффициент восстановления и потерянная при	
ударе кинетическая энергия и их зависимость от скорости	
соударения и постоянных вязкого и сухого трения. Для	
упругого удара коэффициент восстановления является	
монотонно убывающей функцией скорости соударения.	
При стремлении скорости соударения к нулю коэффици-	
ент восстановления стремится к некоторому максималь-	
ному значению, которое меньше единицы, зависит только	
от постоянной сухого трения и убывает с ростом ее зна-	Поступила в редакцию 06.12.2017
чения	© МГТУ им. Н.Э. Баумана, 2018

Работа выполнена при финансовой поддержке РФФИ (грант № 16-01-00521)

Введение. Рассмотрим наиболее простой случай задачи об ударе тела о неподвижную поверхность (препятствие) в предположении, что до и после удара тело движется поступательно вдоль одной и той же оси. Форма тела и препятствия может быть различной, но при этом ударные силы их взаимодействия сводятся к равнодействующей, направленной вдоль этой оси, и линия действия равнодействующей проходит через центр массы тела. Предполагается, что ударные силы взаимодействия существенно больше остальных сил и действием последних можно пренебречь. Задача о коллинеарном соударении двух тел решается аналогично [1, 3].

Коэффициентом восстановления при ударе называется отношение модулей скоростей тела после удара V^+ и до удара V^- [1–10]:

$$k = \left| \frac{V^+}{V^-} \right| = -\frac{V^+}{V^-}.$$
 (1)

Потерянная при ударе кинетическая энергия

$$\Delta T = \frac{m(V^{-})^2}{2} - \frac{m(V^{+})^2}{2} = \frac{m(V^{-})^2}{2}(1 - k^2)$$
(2)

при постоянном значении коэффициента восстановления пропорциональна квадрату скорости соударения V⁻.

Наиболее точная модель удара связана с исследованием динамики движения вязкоупругопластических деформируемых тел [1–3], сложна и требует большого объема численных расчетов [1–3].

Модель удара Ньютона (стереомеханический удар) [1–3] основана на предположении, что время удара бесконечно мало́ и перемещением тела в процессе удара можно пренебречь. И. Ньютон предположил, что коэффициент восстановления определяется материалом, из которого изготовлены тела, и не зависит от скорости соударения. Он разбил процесс удара на два этапа: 1) фаза деформации; 2) фаза восстановления. С. Пуассон ввел другое определение коэффициента восстановления: отношение импульсов ударной силы взаимодействия в фазах восстановления и деформации. В рассматриваемой задаче эти два определения эквивалентны. При косом ударе тела о неподвижное препятствие эти определения неэквивалентны и следует использовать определение Пуассона [1–4]. Модель удара Ньютона не позволяет определить многие важные параметры удара, его продолжительность, максимальное значение силы взаимодействия тел, их деформацию и т. д.

Широкое распространение получила линейная вязкоупругая модель удара Кельвина — Фойхта [1–3], в которой предполагается, что контактная сила взаимодействия тел при ударе сводится к линейной силе упругости и линейной силе сопротивления. Уравнение движения тела при ударе является линейным дифференциальным уравнением с постоянными коэффициентами и имеет аналитическое решение. При этом коэффициент восстановления при ударе постоянный. Модель противоречит естественным физическим представлениям. Сила взаимодействия тел в начале и конце удара равна силе сопротивления и отлична от нуля. Если в процессе деформации меняется пятно контакта, то представляется неестественным предположение о линейной зависимости упругой силы взаимодействия и силы сопротивления от деформации.

Экспериментальные данные [1, 5] опровергают предположение о постоянстве коэффициента восстановления и показывают, что с увеличением скорости соударения тел коэффициент восстановления монотонно убывает.

В волновой теории удара [1–3] тела являются упругими и нет остаточной деформации тел. Потеря энергии при ударе обусловлена возникающими при ударе упругими звуковыми волнами распространения деформации. Скорость распространения этих волн равна скорости звука и зависит от свойств материала. В инженерной практике волновая теория используется для расчета удара стержней о препятствие.

Если время прохождения упругих волн через все тело меньше продолжительности удара и происходит несколько отражений волн за время удара, то влиянием упругих волн можно пренебречь [1–3, 6, 7]. На таких предположениях строится контактная теория удара Герца. Г. Герц предположил, что упругая сила контактного взаимодействия тел при ударе зависит от деформации *x*

так же, как и в случае статического равновесия. Он показал, что если тело и препятствие в окрестности точки соприкосновения имеют сферическую поверхность и их деформации малы по сравнению с их радиусами, то с учетом увеличения пятна контакта сила упругого взаимодействия $F(x) = -cx^{3/2}$, где c — константа, значение которой определяется радиусами этих сферических поверхностей и материалом, из которого изготовлены тела. Герц [6, 7] рассмотрел абсолютно упругий удар. При этом уравнение движения тела имеет интеграл энергии и интегрируется в квадратурах.

К. Хант и Ф. Кроссли [8] обобщили модель удара Герца. Они ввели в нее силу вязкого трения между частицами соударяющихся тел. В силу того, что при росте пятна контакта увеличивается число частиц, трущихся друг о друга, они предположили, что сила вязкого трения растет пропорционально упругой силе взаимодействия тел. Контактная сила взаимодействия тела и препятствия определяется соотношением $F = F(x, \dot{x}) = -cx^n - bcx^n \dot{x}$, где c — коэффициент упругости; b — постоянная сопротивления; n — постоянная, которая определяется формой поверхности тела и препятствия в окрестности точки соприкосновения; x — перемещение тела (деформация), причем $x \ge 0$. В частности, для сферической поверхности тел n = 3/2, для плоской поверхности n = 1. В работе [8] показано, что коэффициент восстановления является монотонно убывающей функцией скорости соударения. При исследовании этой модели удара Хант и Кроссли проводили численное интегрирование нелинейного уравнения движения тела в процессе удара. Такая модель является развитием модели Герца для случая, когда тело и препятствие подчиняются законам вязкоупругого деформирования. Модель построена в предположении, что можно пренебречь волновыми процессами, деформации при ударе малы, остаточной деформацией можно пренебречь. Рассматриваемая модель справедлива для компактных тел, изготовленных из достаточно жесткого материала, при относительно небольших (до нескольких метров в секунду) скоростях соударения. К недостаткам этой модели удара можно отнести невозможность абсолютно неупругого удара и стремление коэффициента восстановления к единице при стремлении скорости соударения к нулю независимо от материала, из которого изготовлены тела.

Для модели удара Ханта — Кроссли в работе [9] получены первый интеграл и решение уравнения движения тела в квадратурах. Аналитически построена зависимость коэффициента восстановления от скорости соударения.

Нелинейная упругопластическая модель коллинеарного удара тела о неподвижное препятствие, в которой предполагается, что трение между частицами деформируемых в процессе удара тел является сухим, рассмотрена в работе [10]. В этой модели удара возможен абсолютно неупругий удар. Коэффициент восстановления меньше единицы и не зависит от скорости соударения. Последний результат не согласуется с экспериментальными данными.

В настоящей работе рассмотрена вязкоупругопластическая модель удара, являющаяся обобщением модели удара Герца — Ханта — Кроссли.

Нелинейная вязкоупругопластическая модель удара. Рассмотрим модель удара, аналогичную модели Герца — Ханта — Кроссли [3, 6, 8–10], но предположим, что между частицами тела, деформируемого при ударе, имеется как вязкое, так и сухое трение. Предположим так же, как и в работах [8–10], что вследствие увеличения пятна контакта силы вязкого и сухого трения возрастают пропорционально упругой силе. Контактная сила взаимодействия тела и препятствия определяется соотношением $F = F(x, \dot{x}) = -f(x) - bf(x)\dot{x} - df(x) \operatorname{sgn} \dot{x}$, где f(x) — упругая сила взаимодействия тел при ударе; b — постоянная вязкого трения; d — постоянная сухого трения.

В процессе удара $x \ge 0$, в начале и в конце удара x = 0. Упругая сила взаимодействия тел при ударе равна нулю в начале и конце удара f(0) = 0 и является возрастающей функцией деформации x.

В моделях удара Герца — Ханта — Кроссли предполагается, что упругая сила взаимодействия тел при ударе равна $f(x) = cx^n$.

Обозначим через $V = \dot{x}$ скорость движения. Уравнение движения тела в фазе деформации (при $V = \dot{x} > 0$) имеет вид

$$m\ddot{x} = F(x,\dot{x}) = -f(x)(1+bV+d),$$
 (3)

где *т*— масса тела.

В конце фазы деформации скорость движения $V = \dot{x} = 0$. Если $d \ge 1$, то в конце фазы деформации тело останавливается. Контактная сила взаимодействия равна нулю. Удар является абсолютно неупругим. Коэффициент восстановления равен нулю.

Если d < 1, то удар упругий, и в фазе восстановления (при $V = \dot{x} < 0$) уравнение движения имеет вид

$$m\ddot{x} = F(x, \dot{x}) = -f(x)(1+bV-d).$$
(4)

В процессе удара $x \ge 0$, причем x = 0 в начале и в конце удара.

Легко видеть, что в случае упругого удара $V = -(1-d)b^{-1} = \text{const} < 0$ представляет собой решение дифференциального уравнения движения (4). Этому решению на фазовой плоскости соответствует фазовая траектория, которая является прямой линией и делит фазовую плоскость на две полуплоскости. В силу принципа детерминированности фазовые траектории не пересекаются и полностью лежат в одной из этих полуплоскостей. В начальный момент времени t = 0 скорость соударения $V^- > 0 > -(1-d)b^{-1}$, тогда в любой момент времени t справедливо неравенство $V > -(1-d)b^{-1}$.

Фазовые траектории системы при ударе, т. е. при $x \ge 0$ и $V^- > 0$, показаны на рис. 1.

Обозначим через $\Pi(x)$ — потенциальную энергию упругой деформации $\Pi(x) = \int_{0}^{x} f(x) dx$. В частности, $\Pi(x) = \frac{cx^{n+1}}{n+1}$ при $f(x) = cx^{n}$.

Исключим время *t* из дифференциального уравнения движения в фазе деформации (3) с помощью преобразования $\ddot{x} = \frac{dV}{dt} = \frac{dV}{dx}\frac{dx}{dt} = V\frac{dV}{dx}$. Разделяя переменные в полученном уравнении и интегрируя его из начального положения в конечное, находим первый интеграл уравнений движения

$$(1+d)\ln\left(1+\frac{\nu}{1+d}\right)-\nu=$$

$$= (1+d)\ln\left(1+\frac{v^{-}}{1+d}\right) - v^{-} + b^{2}\frac{\Pi(x)}{m}, \quad (5)$$

где *v* — безразмерная скорость,

$$=bV.$$
 (6)

Уравнение (5) можно разрешить относительно безразмерной скорости *v*, для чего преобразуем его к виду

$$\ln \phi_1 - \phi_1 = \eta_1. \tag{7}$$

ν

Здесь

$$\varphi_1 = 1 + \frac{\nu}{1+d}; \quad \eta_1 = \eta_1(x) = \ln\left(1 + \frac{\nu}{1+d}\right) - 1 - \frac{\nu}{1+d} + \frac{b^2}{1+d} \frac{\Pi(x)}{m}.$$
(8)

Трансцендентное уравнение (7) решается с помощью специальной функции Ламберта *W*, которая получила известность после ее введения в систему компьютерной алгебры *Maple* в 1980-е годы [11]. Ранее эта функция использовалась некоторыми учеными, начиная с Л. Эйлера, при решении различных математических проблем. Эта функция дифференцируема, интегрируема, построены эф-

фективные процедуры вычисления ее значений на компьютере. С помощью функции Ламберта W получено аналитическое решение ряда задач математики и механики [11].

Функция Ламберта W задается в неявном виде как решение уравнения $We^W = x$. Над полем комплексных чисел это уравнение имеет счетное множество решений, которым соответствуют ветви функции Ламберта $W_k(x)$, где k = 0; ± 1 ; ± 2 ... Над полем действительных чисел функция Ламберта имеет две ветви (рис. 2).

Рис. 2. Функция Ламберта:

Функция Ламберта позволяет получить решение некоторых трансцендентных уравнений, в том числе и уравнения (7), в котором требуется определить $\phi(x)$, такое что

$$\ln \varphi - \varphi = x \Leftrightarrow \ln \left(\varphi e^{-\varphi} \right) = x \Leftrightarrow -\varphi e^{-\varphi} = -e^x \Leftrightarrow \varphi = -W(-e^x).$$

Учитывая, что в фазе деформации v > 0, получаем

$$v = v(x) = -(1+d) \Big[1 + W_{-1} \left(-e^{\eta_1(x)} \right) \Big], \tag{9}$$

где *W*₋₁ — вторая действительная ветвь функции Ламберта.

Обозначим через x_{max} — максимальное перемещение тела (максимальная деформация) при ударе, или значение x в конце фазы деформации. Значение x_{max} определяется как решение уравнения

$$V(x_{\max}) = 0 \Leftrightarrow W_{-1}\left(-e^{\eta_1(x_{\max})}\right) = -1 \Leftrightarrow \eta_1(x_{\max}) = -1.$$

В силу (8) x_{max} — решение уравнения

$$(1+d)\ln\left(1+\frac{\nu^{-}}{1+d}\right)-\nu^{-}+b^{2}\frac{\Pi(x_{\max})}{m}=0.$$
 (10)

При $f(x) = cx^n$ потенциальная энергия $\Pi(x) = \frac{cx^{n+1}}{n+1}$, а решением (10) является

$$x_{\max} = \left[\frac{(n+1)m}{cb^2} \left(v^- - (1+d)\ln\left(1 + \frac{v^-}{1+d}\right)\right)\right]^{\frac{1}{n+1}}.$$

Соотношения (6), (8), (9) позволяют получить решение уравнения движения в фазе деформации (3) в квадратурах как решение уравнения с разделяющимися переменными $\dot{x} = V(x)$:

$$\int_{0}^{x} \frac{dx}{1 + W_{-1} \left[-e^{\eta_{1}(x)} \right]} = -\frac{1+d}{b}t.$$
(11)

Аналогично в фазе восстановления уравнение движения (4) имеет первый интеграл

$$(1-d)\ln\left(1+\frac{\nu}{1-d}\right)-\nu=b^2\frac{\left[\Pi(x)-\Pi(x_{\max})\right]}{m},$$

тогда в силу (10) получаем уравнение

$$(1-d)\ln\left(1+\frac{\nu}{1-d}\right)-\nu = (1+d)\ln\left(1+\frac{\nu^{-}}{1+d}\right)-\nu^{-}+b^{2}\frac{\Pi(x)}{m},$$
(12)

которое можно разрешить относительно безразмерной скорости *v*. Для этого преобразуем его к виду

$$\ln \varphi_2 - \varphi_2 = \eta_2, \tag{13}$$

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2018. № 6

23

$$\varphi_2 = 1 + \frac{\nu}{1-d}; \quad \eta_2 = \eta_2(x) = \frac{1+d}{1-d} \ln\left(1 + \frac{\nu}{1+d}\right) - 1 - \frac{\nu}{1+d} + \frac{b^2}{1-d} \frac{\Pi(x)}{m}.$$
 (14)

Трансцендентное уравнение (14) решается с помощью специальной функции Ламберта W. Учитывая, что в фазе восстановления -1 < -(1-d) < v < 0, получаем

$$v = v(x) = -(1-d) \Big[1 + W_0 \left(-e^{\eta_2(x)} \right) \Big], \tag{15}$$

где *W*₀ — основная ветвь функции Ламберта.

Соотношения (6), (8), (11), (15) позволяют получить решение уравнения движения в фазе восстановления (4) в квадратурах как решение уравнения с разделяющимися переменными $\dot{x} = V(x)$:

$$\frac{1-d}{1+d} \int_{0}^{x_{\max}} \frac{dx}{1+W_{-1}\left[-e^{\eta_{1}(x)}\right]} + \int_{x_{\max}}^{x} \frac{dx}{1+W_{0}\left[-e^{\eta_{2}(x)}\right]} = -\frac{1-d}{b}t,$$
(16)

где x_{max} — решение (10).

Уравнения (11), (16) определяют в неявном виде закон движения тела при ударе.

Коэффициент восстановления и потерянная кинетическая энергия. Из интеграла уравнений движения в фазе восстановления (12) в силу того, что в начале и конце удара x = 0, получим, что начальная и конечная безразмерные скорости при ударе связаны соотношением

$$(1-d)\ln\left(1+\frac{\nu^{+}}{1-d}\right)-\nu^{+}=(1+d)\ln\left(1+\frac{\nu^{-}}{1+d}\right)-\nu^{-},$$
(17)

причем $\nu^- \in (0, +\infty), \ \nu^+ \in (-1, 0).$

В силу (1), (6) $v^+ = -kv^-$, где k — коэффициент восстановления. Подставляя это соотношение в (17), получаем, что коэффициент восстановления является решением трансцендентного уравнения

$$v^{-}(1+k) + (1-d)\ln\left(1 - \frac{kv^{-}}{1-d}\right) - (1+d)\ln\left(1 + \frac{v^{-}}{1+d}\right) = 0.$$
 (18)

Из (14), (15) следует

$$k = -\frac{\nu^{+}}{\nu^{-}} = \frac{1-d}{\nu^{-}} \left\{ 1 + W_0 \left[-\left(1 + \frac{\nu^{-}}{1+d}\right)^{\frac{1+d}{1-d}} \exp\left(-1 - \frac{\nu^{-}}{1-d}\right) \right] \right\}.$$
 (19)

Зависимость коэффициента восстановления от безразмерной скорости до удара v^- при различных значениях постоянной сухого трения d приведена на рис. 3, a. Отметим, что коэффициент восстановления не зависит от вида функции f(x), т. е. от вида зависимости упругой составляющей контактной силы взаимодействия. В то же время функция f(x) существенно влияет на остальные параметры удара: максимальная деформация; максимальная контактная сила

где

взаимодействия тела с препятствием; продолжительность удара. Коэффициент восстановления зависит только от постоянной сухого трения d и безразмерной скорости соударения, равной $v^- = bV^-$, где b — постоянная вязкого трения; V^- — скорость соударения.

Рис. 3. Зависимости коэффициента восстановления и относительной потерянной кинетической энергии от безразмерной скорости соударения при значениях постоянной сухого трения d = 0 (1), 0,2 (2), 0,4 (3), 0,6 (4) и 0,8 (5)

Исследуем эту зависимость при малых значениях v^- . Используя разложения в ряд Маклорена функции $\ln(1+\alpha) = \alpha - \frac{1}{2}\alpha^2 + \frac{1}{3}\alpha^3 - ...,$ в уравнении (18) оставим только члены до третьего порядка малости по v^- , тогда

$$v^{-}(1+k) - (1-d) \left[\frac{kv^{-}}{1-d} + \frac{1}{2} \left(\frac{kv^{-}}{1-d} \right)^{2} + \frac{1}{3} \left(\frac{kv^{-}}{1-d} \right)^{3} \right] - (1+d) \left[\frac{v^{-}}{1+d} - \frac{1}{2} \left(\frac{v^{-}}{1+d} \right)^{2} + \frac{1}{3} \left(\frac{v^{-}}{1+d} \right)^{3} \right] = 0,$$

откуда

$$\frac{1-d}{1+d} - k^2 - \frac{2\nu}{3(1-d)} \left[\left(\frac{1-d}{1+d} \right)^2 + k^3 \right] = 0.$$
(20)

Из (20) следует, что при малых ν^- коэффициент восстановления принимает значения

$$k = \sqrt{\frac{1-d}{1+d}} - \delta, \tag{21}$$

где δ — малая положительная величина. Подставим (21) в (20), тогда с точностью до членов первого порядка малости получим

$$k = \sqrt{\frac{1-d}{1+d}} - \frac{\nu^-}{3(1+d)} \left[1 + \sqrt{\frac{1-d}{1+d}} \right].$$

Кинетическая энергия ΔT , потерянная при ударе, определяется по соотношению (2). Обозначим через T^- кинетическую энергию тела до удара, тогда относительная потерянная кинетическая энергия

$$\frac{\Delta T}{T^-} = 1 - k^2.$$

Ее зависимость от безразмерной скорости до удара v^- при различных значениях постоянной сухого трения приведена на рис. 3, δ .

Результаты математического моделирования. Если поверхность тела и препятствия в окрестности точки соприкосновения сферическая, то сила упругой деформации в соответствии с результатами Герца [3, 6, 7] имеет вид $f(x) = cx^{3/2}$, где

$$\frac{1}{c} = \frac{3}{4} \left(\frac{1 - \mu_1^2}{E_1} + \frac{1 - \mu_2^2}{E_2} \right) \sqrt{\frac{1}{R_1} + \frac{1}{R_2}}.$$

Здесь *E*_{1,2} — модули упругости; µ_{1,2} — коэффициенты Пуассона; *R*_{1,2} — радиусы поверхности тела и препятствия.

В качестве примера рассмотрим удар стального шарика массой m = 0,1 кг о массивную стальную плиту. Для стали $\rho = 7800$ кг/м³, $E = 2 \cdot 10^{11}$ H/м², $\mu = 0, 25$, радиус шарика R = 1,452 см, коэффициент упругости $c = 1,7135 \cdot 10^{10}$ H/м^{3/2}. В расчетах примем, что постоянная вязкого трения b = 0,075 с/м, постоянная сухого трения d = 0,077. Эти значения получены методом наименьших квадратов в результате обработки оцифрованных данных с экспериментальной зависимости коэффициента восстановления от скорости соударения для двух шаров из закаленной стали [1].

Зависимости от времени деформации и контактной силы взаимодействия тела и препятствия при различных значениях скорости V^- приведены на рис. 4, *a*, *b*, зависимость контактной силы от деформации — на рис. 4, *b*. Площадь, ограниченная этой кривой, равна потерянной кинетической энергии при ударе. Зависимости максимальной деформации и продолжительности удара от скорости соударения V^- показаны на рис. 5. Полученные результаты хорошо согласуются с экспериментальными данными, приведенными в работе [1].

Заключение. На основе моделей удара Герца и Ханта — Кроссли построена нелинейная вязкоупругопластическая модель коллинеарного удара тела о неподвижное препятствие. Предполагается, что между частицами деформируемых в процессе удара тел имеется как вязкое, так и сухое трение. Получены первые интегралы уравнений движения в фазах деформации и восстановления, а также решение уравнение движение тела в процессе удара в квадратурах. В рамках построенной модели удара возможны абсолютный неупругий и упругий удары. При упру-

Рис. 4. Зависимости деформации (*a*) и контактной силы (*б*) от времени, зависимость контактной силы от деформации (*в*) при $V^- = 1$ (1), 2 (2), 3 (3), 4 (4) и 5 м/с (5)

10

5

Рис. 5. Зависимости максимальной деформации (*a*) и времени (*б*) от скорости соударения V^-

гом ударе коэффициент восстановления уменьшается при увеличении скорости соударения. При стремлении скорости соударения к нулю коэффициент восстановления стремится к предельному значению, которое меньше либо равно единице, и его значение уменьшается при увеличении постоянной сухого трения.

Далее предполагается рассмотреть низкоскоростную модель удара при малых значениях скорости соударения. В этом случае контактная сила взаимодействия тела с поверхностью сопоставима с силой тяжести. Поэтому необходимо учитывать силу тяжести в уравнении удара. Эту модель предполагается использовать при моделировании процесса постановки и контакта ног шагающей машины с твердой опорной поверхностью [12].

ЛИТЕРАТУРА

1. Гольдсмит В. Удар. Теоретические и физические свойства соударяемых тел. М.: Стройиздат, 1965. 448 с.

2. Пановко Я.Г. Введение в теорию механического удара. М.: Наука, 1977. 224 с.

3. *Иванов А.П.* Динамика систем с механическими соударениями. М.: Междунар. программа образования, 1997. 336 с.

4. *Лапшин В.В.* Удар тела о препятствие // Инженерный журнал: наука и инновации. 2013. Вып. 12. DOI: 10.18698/2308-6033-2013-12-1134

5. *Кочетков А.В.*, *Федотов П.В.* Некоторые вопросы теории удара // Науковедение. 2013. № 5. URL: https://naukovedenie.ru/PDF/110tvn513.pdf

6. *Herts H*. Über die Berührung Fester Elastischer Körper // Journal Reine und Angewandte Mathematik. 1882. Vol. 92. P. 156–171.

7. Герц Г. Принципы механики, изложенные в новой связи. М.: АН СССР, 1959. 387 с.

8. *Hunt K.H., Crossley F.R.E.* Coefficient of restitution interpreted as damping in vibroimpact // ASME J. Appl. Mech. 1975. Vol. 42. Iss. 2. P. 440–445. DOI: 10.1115/1.3423596

9. Дягель Р.В., Лапшин В.В. О нелинейной вязкоупругой модели коллинеарного удара Ханта — Кроссли // Изв. РАН. МТТ. 2011. № 5. С. 164–173.

10. Лапшин В.В., Юрин Е.А. Нелинейная модель коллинеарного удара // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2016. № 1. С. 90–99. DOI: 10.18698/1812-3368-2016-1-90-99

11. On the Lambert W function / R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, D.E. Knuth // Adv. Comput. Math. 1996. Vol. 5. Iss. 1. P. 329–359. DOI: 10.1007/BF02124750

12. *Лапшин В.В.* Механика и управление движением шагающих машин. М.: Изд-во МГТУ им. Н.Э. Баумана, 2012. 200 с.

Боровин Геннадий Константинович — д-р физ.-мат. наук, профессор, главный научный сотрудник ИПМ им. М.В. Келдыша РАН (Российская Федерация, 125047, Москва, Миусская пл., д. 4).

Лапшин Владимир Владимирович — д-р физ.-мат. наук, профессор кафедры «Теоретическая механика» МГТУ им. Н.Э. Баумана (Российская Федерация, 105005, Москва, 2-я Бауманская ул., д. 5, стр. 1).

Просьба ссылаться на эту статью следующим образом:

Боровин Г.К., Лапшин В.В. Обобщенная модель удара Герца — Ханта — Кроссли // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2018. № 6. С. 18–30. DOI: 10.18698/1812-3368-2018-6-18-30

GENERALISED HERTZ - HUNT - CROSSLEY COLLISION MODEL

G.K. Borovin ¹	borovin@keldysh.ru
V.V. Lapshin ²	lapshin032@bmstu.ru

¹ Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, Russian Federation

² Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract	Keywords
Abstract The paper considers a nonlinear visco-elastoplastic model for a collinear collision between a body and a fixed barrier. The model combines the Hertz and Hunt — Crossley collision models. We show that both elastic and perfectly inelastic collisions are possible, depending on the values of model parameters. We obtained the first integrals to the equations of motion for the deformation and restitution phases, as well as a solution by quadrature to the equations of motion describing the body. We determined the coeffi- cient of restitution, the kinetic energy lost in the collision,	Keywords Collinear collision, coefficient of restitution, nonlinear dynamics
and how they depend on the impact velocity and the con- stants of viscous and dry friction. For the case of an elastic collision, the coefficient of restitution is a monotonically decreasing function of impact velocity. As the impact velocity tends to zero, the coefficient of restitution tends to a certain maximum value that does not exceed unity,	
depends on the constant of dry friction only and decreases as it increases	Received 06.12.2017 © BMSTU, 2018

The study was supported by RFBR (grant no. 16-01-00521)

REFERENCES

[1] Gol'dsmit V. Udar. Teoreticheskie i fizicheskie svoystva soudaryaemykh tel [Collision. Theoretical and physical properties of colliding bodies]. Moscow, Stroyizdat Publ., 1965. 448 p.

[2] Panovko Ya.G. Vvedenie v teoriyu mekhanicheskogo udara [Introduction to mechanical shock theory]. Moscow, Nauka Publ., 1977. 224 p.

[3] Ivanov A.P. Dinamika sistem s mekhanicheskimi soudareniyami [Dynamics of systems with mechanical collisions]. Moscow, Mezhdunar. programma obrazovaniya Publ., 1997. 336 p.

[4] Lapshin V.V. A body collision with an obstacle. *Inzhenernyy zhurnal: nauka i innovatsii* [Engineering Journal: Science and Innovation], 2013, no. 12 (in Russ.). DOI: 10.18698/2308-6033-2013-12-1134

[5] Kochetkov A.V., Fedotov P.V. Some questions of the theory of blow. *Naukovedenie*, 2013, no. 5 (in Russ.). Available at: https://naukovedenie.ru/PDF/110tvn513.pdf

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2018. № 6

[6] Herts H. Über die Berührung Fester Elastischer Körper. *Journal Reine und Angewandte Mathematik*, 1882, vol. 92, pp. 156–171.

[7] Gerts G. Printsipy mekhaniki, izlozhennye v novoy svyazi [Principles of mechanics stated in new relation]. Moscow, AN SSSR Publ., 1959. 387 p.

[8] Hunt K.H., Crossley F.R.E. Coefficient of restitution interpreted as damping in vibroimpact. *J. Appl. Mech.*, 1975, vol. 42, iss. 2, pp. 440–445. DOI: 10.1115/1.3423596

[9] Dyagel' R.V., Lapshin V.V. On a nonlinear viscoelastic model of Hunt — Crossley impact. *Mech. Solids*, 2011, vol. 46, iss. 5, pp. 798–806. DOI: 10.3103/S0025654411050141

[10] Lapshin V.V., Yurin E.A. Nonlinear elastoplastic model of collinear impact. *Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki* [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2016, no. 1, pp. 90–99 (in Russ.). DOI: 10.18698/1812-3368-2016-1-90-99

[11] Corless R.M., Gonnet G.H., Hare D.E.G., Jeffrey D.J., Knuth D.E. On the Lambert *W* function. *Adv. Comput. Math.*, 1996, vol. 5, iss. 1, pp. 329–359. DOI: 10.1007/BF02124750

[12] Lapshin V.V. Mekhanika i upravlenie dvizheniem shagayushchikh mashin [Mechanics and control on walking machines motion]. Moscow, Bauman MSTU Publ., 2012. 200 p.

Borovin G.K. — Dr. Sc. (Phys.-Math.), Professor, Leading Research Fellow, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences (Miusskaya ploschad 4, Moscow, 125047 Russian Federation).

Lapshin V.V. — Dr. Sc. (Phys.-Math.), Professor, Department of Theoretical Mechanics, Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, str. 1, Moscow, 105005 Russian Federation).

Please cite this article in English as:

Borovin G.K., Lapshin V.V. Generalised Hertz — Hunt — Crossley Collision Model. *Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki* [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2018, no. 6, pp. 18–30 (in Russ.). DOI: 10.18698/1812-3368-2018-6-18-30