УДК 539.3

ВОЛНА РЭЛЕЯ НА ГРАНИЦЕ ГРАДИЕНТНО-УПРУГОГО ПОЛУПРОСТРАНСТВА

А.М. Антонов В.И. Ерофеев artem.antonov@autorambler.ru erof.vi@yandex.ru

Институт проблем машиностроения РАН, Нижний Новгород, Российская Федерация

Аннотация	Ключевые слова
Рассмотрена математическая модель обобщенного	Градиентно-упругое полупро-
континуума (называемого градиентно-упругой сре-	странство, поверхностная волна,
дой), напряженно-деформированное состояние кото-	моментное напряжение, фазовая
рого описывается тензором деформаций, вторыми	скорость, потенциал, частота
градиентами вектора перемещений, несимметричным	
тензором напряжений и тензором моментных на-	
пряжений. В двумерной постановке изучена задача о	
распространении упругой поверхностной волны на	
границе градиентно-упругого полупространства.	
Решение уравнений найдено в виде суммы скалярно-	
го и векторного потенциалов, причем у векторного	
потенциала отлична от нуля только одна компонента.	
Показано, что такая волна в отличие от классической	
волны Рэлея обладает дисперсией. Вычислена зави-	
симость фазовой скорости поверхностной волны от	
волнового числа, проведено ее сравнение с дисперси-	
онной характеристикой фазовой скорости объемной	
сдвиговой волны. Рассчитаны напряжения и переме-	
щения, возникающие в зоне распространения по-	Поступила в редакцию 01.09.2017
верхностной волны	© МГТУ им. Н.Э. Баумана, 2018

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 14-19-01637)

Введение. В 1885 г. Дж. Рэлей теоретически показал, что вдоль плоской границы твердого упругого полупространства с вакуумом или достаточно разряженной средой (например, с воздухом) могут распространяться волны, амплитуда которых быстро уменьшается с глубиной [1]. Эти волны, названные впоследствии поверхностными волнами Рэлея, являются основным типом волн, наблюдаемых при землетрясениях. Поэтому они подробно изучаются в сейсмологии [2].

Основные закономерности распространения волн Рэлея следующие: отсутствие дисперсии, т. е. скорость волны не зависит от ее частоты и является постоянной для каждого материала, достигает 0,87–0,96 скорости объемной сдвиговой волны; вектор перемещений имеет продольную и поперечную составляющие, при этом поперечная составляющая всегда превосходит продольную. В последние годы широкое применение нашли волны Рэлея ультразвукового диапазона, с помощью которых можно контролировать состояние поверхностного слоя образца (выявление поверхностных и околоповерхностных дефектов в образцах из металла, стекла, пластмассы и других материалов — ультразвуковая поверхностная дефектоскопия). Влияние свойств поверхностного слоя образца на скорость и затухание волн Рэлея позволяет использовать дефектоскопию для определения остаточных напряжений поверхностного слоя металла, термических и механических свойств поверхностного слоя образца [3, 4].

Наряду с моделью классического континуума в механике деформируемого твердого тела широко применяют модели обобщенных континуумов [5–11]. В частности, к числу обобщенных континуумов относится градиентно-упругая среда. Эта модель разработана в начале 20-го века и связана с именами Ж.-М. Ле Ру (1911, 1913) [12, 13] и Т. Джеремилло (1929) [14]. Поверхностные волны Рэлея в рамках градиентно-упругой модели практически не изучались. Исключение составляет работа [15], в которой на основании проведенных исследований утверждается, что скорость поверхностной волны в градиентно-упругой среде может превосходить скорость объемной сдвиговой волны.

В настоящей работе изучены основные закономерности распространения волны Рэлея вдоль границы градиентно-упругого полупространства, в частности проверено утверждение, содержащееся в работе [15].

Основные уравнения градиентной теории упругости. Деформированное состояние градиентно-упругой среды описывается тензором деформаций и вторыми градиентами вектора перемещений:

$$\varepsilon_{k\ell} = \frac{1}{2} \left(\frac{\partial u_k}{\partial x_\ell} + \frac{\partial u_\ell}{\partial x_k} \right);$$

$$\chi_{k\ell m} = -\frac{\partial^2 u_k}{\partial x_\ell \partial x_m}.$$
(1)

При рассмотрении адиабатических процессов упругого деформирования необходимо постулировать зависимость внутренней энергии U от инвариантов мер деформации (1).

Разложим функцию *U* в окрестности естественного состояния ($\varepsilon_{k\ell} = 0$, $\chi_{k\ell m} = 0$) в ряд Тейлора, пренебрегая величинами третьего порядка. Для изотропного однородного и центрально-симметричного тела получим разложение следующего вида [16]:

$$U = \frac{\lambda}{2} \varepsilon_{kk}^2 + \mu \varepsilon_{ik}^2 + 2\mu L^2 \left(\chi_{k\ell m}^2 + \tilde{\nu} \chi_{k\ell m} \chi_{\ell k m} \right), \qquad (2)$$

где λ, μ — упругие постоянные Ламе; L^2 — отношение модуля кривизны к модулю сдвига μ , имеющее размерность квадрата длины; $\tilde{\nu}$ — безразмерная константа; ρ — плотность среды. В перемещениях векторное уравнение динамики градиентно-упругой среды имеет вид

$$\rho \,\vec{u}_i - (\lambda + \mu) \,\text{grad div } \vec{u} - \mu \Delta \vec{u} + 4\mu \,L^2 \Delta \left(\Delta \vec{u} + \tilde{\nu} \,\text{grad div } \vec{u}\right) = 0. \tag{3}$$

Легко заметить, что уравнение (3) содержит четвертый порядок производных по координатам в отличие от классического уравнения Ламе, которое описывает динамику деформируемого твердого тела, содержащего вторые производные по координатам.

Постановка задачи и ее решение. Рассмотрим упругое изотропное полупространство $y \ge 0$ (ограничимся двумерным случаем, когда все процессы однородны по оси z). Предположим, что поверхностная волна распространяется в направлении оси x.

Уравнения динамики, эквивалентные векторному уравнению (3), в двумерном случае запишем в виде [15]:

$$\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{yx}}{\partial y} = \rho \frac{\partial^2 u}{\partial t^2};$$

$$\frac{\partial \sigma_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} = \rho \frac{\partial^2 v}{\partial t^2}.$$
(4)

Здесь *и*, *v* — продольная и поперечная составляющие (смещения) вектора перемещений.

Будем полагать, что на границе y = 0 напряжения и моментные напряжения отсутствуют, т. е. граничные условия для системы уравнений (4) имеют вид [15]

$$\sigma_{yy}\Big|_{y=0} = 0; \ \sigma_{yx}\Big|_{y=0} = 0; \ \sigma_{yz}\Big|_{y=0} = 0;$$

$$\mu_{y} = 0.$$
(5)

Причем третье условие тождественно удовлетворяется в силу предположения о независимости деформаций от переменной *z*.

Компоненты тензора напряжений, входящие в (4), (5), связаны с составляющими *u*, *v* следующими соотношениями:

$$\sigma_{xx} = \lambda \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + 2\mu \frac{\partial u}{\partial x}, \quad \sigma_{yy} = \lambda \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + 2\mu \frac{\partial v}{\partial y};$$

$$\sigma_{xy} = \mu \left[\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} - L^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \right];$$

$$\sigma_{yx} = \mu \left[\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} + L^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \right].$$
(6)

Легко заметить, что $\sigma_{xy} \neq \sigma_{yx}$.

Моментные напряжения μ_x и μ_y выражаются через *и*, *v*:

$$\mu_{x} = 2 \mu L^{2} \frac{\partial}{\partial x} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right);$$

$$\mu_{y} = 2 \mu L^{2} \frac{\partial}{\partial y} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right).$$
(7)

Введем скалярный (φ) и векторный (ψ) потенциалы так, что вектор перемещений примет вид [17]:

$$\vec{u} = \nabla \phi + \nabla * \psi. \tag{8}$$

Поскольку перемещение не зависит от координаты z, у векторного потенциала будет отличной от нуля только компонента по оси z, которую обозначим как ψ .

С учетом (8) система (4) приводится к уравнениям

$$\Delta \varphi - \frac{1}{c_1^2} \frac{\partial^2 \varphi}{\partial t^2} = 0; \tag{9}$$

$$\Delta \left(1 - L^2 \Delta\right) \psi - \frac{1}{c_2^2} \frac{\partial^2 \psi}{\partial t^2} = 0, \tag{10}$$

где

$$c_1^2 = \frac{\left(\lambda + 2\mu\right)}{\rho}, \ c_2^2 = \frac{\mu}{\rho}$$

— квадраты скоростей продольной и поперечной волн.

Решение уравнений (9), (10) будем искать в виде волн, гармонических во времени и распространяющихся в направлении оси *x*:

Амплитуды этих волн зависят от координаты *у*. Подставляя формулы (11) в (9), (10), получаем

$$\zeta^{2} + \left(\frac{\omega}{c_{1}}\right)^{2} - k^{2} = 0;$$

$$L^{2}\eta^{4} - \left(1 + 2L^{2}k^{2}\right)\eta^{2} + \left[k^{2} + L^{2}k^{4} - \left(\frac{\omega}{c_{2}}\right)^{2}\right] = 0.$$
(12)

Для того чтобы возмущения убывали от границы внутрь среды и соответствовали поверхностной волне, необходимо определить такие корни уравнений (12), чтобы ζ и η были положительными, в результате

$$\zeta = \sqrt{k^2 - \left(\frac{\omega}{c_1}\right)^2}, \quad k^2 > \left(\frac{\omega}{c_1}\right)^2; \quad (13)$$

$$\eta_{1,2} = \sqrt{\frac{\left(1+2L^2k^2\right) \pm \sqrt{\left(1+2L^2k^2\right)^2 - 4L^2\left[k^2 + L^2k^4 - \left(\omega/c_2\right)^2\right]}}{2L^2}}.$$
(13)

Тогда соотношения (11) будут иметь вид

$$\varphi = A e^{\zeta y + i(\omega t - kx)};$$

$$\psi = B_1 e^{\eta_1 y + i(\omega t - kx)} + B_2 e^{\eta_2 y + i(\omega t - kx)}.$$
(14)

Перемещения *и* и *v*, напряжения σ_{yy} , σ_{yx} и моментное напряжение μ_y можно представить через потенциалы φ и ψ :

$$u = \frac{\partial \varphi}{\partial x} + \frac{\partial \psi}{\partial y}, \quad v = \frac{\partial \varphi}{\partial y} - \frac{\partial \psi}{\partial x};$$

$$\sigma_{yy} = \lambda \left(\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} \right) + 2\mu \left(\frac{\partial^2 \varphi}{\partial y^2} - \frac{\partial^2 \psi}{\partial x \partial y} \right);$$

$$\sigma_{yx} = \mu \left(2 \frac{\partial^2 \varphi}{\partial x \partial y} - \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} - L^2 \left(\frac{\partial^4 \psi}{\partial x^4} + 2 \frac{\partial^4 \psi}{\partial x^2 \partial y^2} + \frac{\partial^4 \psi}{\partial y^4} \right) \right);$$

$$\mu_y = -2\mu L^2 \left(\frac{\partial^3 \psi}{\partial x^2 \partial y} + \frac{\partial^3 \psi}{\partial y^3} \right).$$
(15)

Подставляя в (15) выражения (14) и используя граничные условия (5), получаем следующую систему уравнений:

$$\sigma_{yy} = Ae^{\zeta y + i(\omega t - kx)} \left(\lambda \zeta^{2} - \lambda k^{2} + 2\mu \zeta^{2}\right) + 2B_{1}\mu ik\eta_{1}e^{\eta_{1}y + i(\omega t - kx)} + + 2B_{2}\mu ik\eta_{2}e^{\eta_{2}y + i(\omega t - kx)} = 0;$$

$$\sigma_{yx} = -2A\mu\zeta kie^{\zeta y + i(\omega t - kx)} + B_{1}\mu e^{\eta_{1}y + i(\omega t - kx)} \left(k^{2} + \eta_{1}^{2} + 2\eta_{1}^{2}k^{2}L^{2} - \eta_{1}^{4}L^{2} - -k^{4}L^{2}\right) + + B_{2}\mu e^{\eta_{2}y + i(\omega t - kx)} \left(k^{2} + \eta_{2}^{2} + 2\eta_{2}^{2}k^{2}L^{2} - \eta_{2}^{4}L^{2} - k^{4}L^{2}\right) = 0;$$

$$\mu_{y} = 2B_{1}L^{2}\eta_{1}\mu e^{\eta_{1}y + i(\omega t - kx)} \left(k^{2} - \eta_{1}^{2}\right) + 2B_{2}L^{2}\eta_{2}\mu e^{\eta_{2}y + i(\omega t - kx)} \left(k^{2} - \eta_{2}^{2}\right) = 0,$$
(16)

представляющую собой однородную систему алгебраических уравнений для определения A, B_1 и B_2 . Система (16) имеет решения, отличные от нуля, если ее определитель обращается в нуль:

$$\eta_{2} \left(\lambda \zeta^{2} - \lambda k^{2} + 2\mu \zeta^{2}\right) \left(k^{2} + \eta_{1}^{2} + 2\eta_{1}^{2}k^{2}L^{2} - \eta_{1}^{4}L^{2} - k^{4}L^{2}\right) \left(k^{2} - \eta_{2}^{2}\right) - -\eta_{1} \left(\lambda \zeta^{2} - \lambda k^{2} + 2\mu \zeta^{2}\right) \left(k^{2} + \eta_{2}^{2} + 2\eta_{2}^{2}k^{2}L^{2} - \eta_{2}^{4}L^{2} - k^{4}L^{2}\right) \left(k^{2} - \eta_{1}^{2}\right) + 2k^{2}\zeta\eta_{1}\eta_{2} \left(\eta_{2}^{2} - \eta_{1}^{2}\right) = 0.$$
(17)

Учитывая $\zeta = c_R^2 = \omega^2 / (k^2 c_2^2)$, $\alpha = L^2 k^2$, $\beta = (1 - 2\nu) / (2 - 2\nu)$, где c_R — скорость поверхностной волны; ν — коэффициент Пуассона, из (17) получаем дисперсионное уравнение:

А.М. Антонов, В.И. Ерофеев

$$16(1-\beta\varsigma)(1+\alpha-\varsigma)\Big[1+2\alpha+2\sqrt{\alpha(1+\alpha-\varsigma)}\Big] = \\ = (2-\varsigma)^{2}\Big[(1-3\alpha^{2})^{2}+\alpha(3-\alpha)(1+\alpha-\varsigma)+(1-\alpha^{2})(1+\alpha-\varsigma)^{2}+ \\ +\alpha(1+\alpha-\varsigma)^{3}+2(1-3\alpha^{2})(3-\alpha)\sqrt{\alpha(1+\alpha-\varsigma)}+2(1-3\alpha^{2})(1-\alpha)(1+\alpha-\varsigma)- \\ -2(1-3\alpha^{2})(1+\alpha-\varsigma)\sqrt{\alpha(1+\alpha-\varsigma)}+ \\ +2(3-\alpha)(1-\alpha)(1+\alpha-\varsigma)\sqrt{\alpha(1+\alpha-\varsigma)}- \\ -2(3-\alpha)(1+\alpha-\varsigma)^{2}\alpha-2(1-\alpha)(1+\alpha-\varsigma)^{2}\sqrt{\alpha(1+\alpha-\varsigma)}\Big].$$
(18)

При L = 0 или $\alpha = 0$ из (18) запишем уравнение для определения скорости поверхностной волны в классическом случае [18]:

$$16(1-\beta\varsigma)(1-\varsigma) = (2-\varsigma)^2 (3+(1-\varsigma)^2 - 2\varsigma).$$
(19)

Отметим, что в уравнение (18) входит волновое число α , поэтому поверхностная волна обладает дисперсией в отличие от классического случая, в котором поверхностная волна Рэлея дисперсии не имеет.

Зависимости квадрата скорости поверхностной волны c_R от волнового числа α приведены на рис. 1, *а*. Кривые представлены в безразмерной форме: квадрат скорости поверхностной волны отнесен к квадрату скорости сдвиговой волны. Кривые получены для двух значений коэффициента Пуассона: v = 0,2 (кривые 1) и v = 0,5 (кривые 2). С увеличением волнового числа α квадрат скорости поверхностной волны возрастает, и при $\alpha \to \infty$ $\varsigma \to 2$ или $c_R \to \sqrt{2}$.

Рис. 1. Зависимость квадрата скорости поверхностной волны при v = 0,2 (кривые 1) и v = 0,5 (кривые 2) от волнового числа (*a*) и зависимости квадрата скорости фазовой (1) сдвиговой волны и квадрата скорости поверхностной волны (2) от волнового числа (*б*)

Получим выражение для фазовой скорости плоской сдвиговой волны $v_{\phi}(\alpha)$ и сравним ее со скоростью поверхностной волны $c_R(\alpha)$.

Уравнение для плоской сдвиговой волны с учетом (10) примет вид

$$\frac{\partial^2 \Psi}{\partial x^2} - L^2 \frac{\partial^4 \Psi}{\partial x^4} = \frac{1}{c_2^2} \frac{\partial^2 \Psi}{\partial t^2}.$$
(20)

Решение (20) будем искать в виде $\psi = Be^{i(\omega t - kx)}$, откуда

$$\omega^{2} = c_{2}^{2}k^{2} \left(1 + L^{2}k^{2}\right);$$

$$v_{\Phi}^{2} = \frac{\omega^{2}}{k^{2}} = c_{2}^{2} \left(1 + L^{2}k^{2}\right); \quad \frac{v_{\Phi}^{2}}{c_{2}^{2}} = (1 + \alpha).$$
(21)

Из (21) следует, что сдвиговая волна в градиентно-упругой среде обладает дисперсией, ее фазовая скорость не совпадает со скоростью *c*₂ и превосходит ее при любом ненулевом значении волнового числа.

Зависимости квадрата скорости поверхностной волны и квадрата фазовой скорости сдвиговой волны приведены на рис. 1, *б*. Кривые представлены в безразмерной форме: величины отнесены к квадрату скорости сдвиговой волны c_2^2 . Скорость поверхностной волны рассчитана для значения коэффициента Пуассона v = 0,5. Согласно приведенной зависимости скорость поверхностной волны не может превышать фазовую скорость сдвиговой волны, но может достигать ее при определенных значениях волнового числа α .

Вычисление перемещений и напряжений. Из (14) и (15) следует, что перемещения *и* и *v* могут быть записаны как

$$u = -iAke^{\zeta y + i(\omega t - kx)} + B_1\eta_1 e^{\eta_1 y + i(\omega t - kx)} + B_2\eta_2 e^{\eta_2 y + i(\omega t - kx)} =$$

$$= \left(-iAke^{\zeta y} + B_1\eta_1 e^{\eta_1 y} + B_2\eta_2 e^{\eta_2 y}\right)e^{i(\omega t - kx)};$$

$$v = A\zeta e^{\zeta y + i(\omega t - kx)} + iB_1ke^{\eta_1 y + i(\omega t - kx)} + iB_2ke^{\eta_2 y + i(\omega t - kx)} =$$

$$= \left(A\zeta e^{\zeta y} + iB_1ke^{\eta_1 y} + iB_2ke^{\eta_2 y}\right)e^{i(\omega t - kx)}.$$
(22)

Система уравнений (16) позволяет выразить постоянные B₁ и A через B₂:

$$B_{1} = -B_{2} \frac{\eta_{2}}{\eta_{1}} \left(\frac{k^{2} - \eta_{2}^{2}}{k^{2} - \eta_{1}^{2}} \right);$$

$$A = \frac{2iB_{2}\eta_{2}k\mu}{\left(\lambda\zeta^{2} - \lambda k^{2} + 2\mu\zeta^{2}\right)} \left(\frac{k^{2} - \eta_{2}^{2}}{k^{2} - \eta_{1}^{2}} - 1 \right).$$
(23)

Соотношения (23) после взятия вещественных частей (22) позволяют записать выражения для перемещений

$$u = B_2 \eta_2 \left[\frac{2k^2 \mu}{\left(\lambda \zeta^2 - \lambda k^2 + 2\mu \zeta^2\right)} \left(\frac{f^2 - \eta_2^2}{f^2 - \eta_1^2} - 1 \right) e^{-\zeta y} - \frac{f^2 - \eta_2^2}{f^2 - \eta_1^2} e^{-\eta_1 y} + e^{-\eta_2 y} \right] \times \\ \times \cos\left(kx - \omega t\right);$$

А.М. Антонов, В.И. Ерофеев

$$v = -B_2 \left[\frac{2k^2 \mu \eta_2 \zeta}{\left(\lambda \zeta^2 - \lambda k^2 + 2\mu \zeta^2\right)} \left(\frac{f^2 - \eta_2^2}{f^2 - \eta_1^2} - 1 \right) e^{-\zeta y} - k \frac{\eta_2}{\eta_1} \left(\frac{f^2 - \eta_2^2}{f^2 - \eta_1^2} \right) e^{-\eta_1 y} + k e^{-\eta_2 y} \right] \times \\ \times \sin\left(kx - \omega t\right).$$

Рис. 2. Зависимости амплитуд перемещений $v / v_{|y=0}$ (1) и $u / v_{|y=0}$ (2) в поверхностной волне от глубины

Зависимости амплитуд перемещений uи v в поверхностной волне от глубины приведены на рис. 2. Кривые представлены в безразмерной форме: амплитуды смещений отнесены к амплитуде нормального смещения на поверхности $v_{|y=0}$; глубина отложена в долях длины волны. Смещение, нормальное к поверхности, сначала возрастает, достигая максимума приблизительно при $y = 0,1\lambda$, а затем монотонно убывает с глубиной, тогда как смещение, параллельное поверхности, изменяет знак на глубине примерно $y = 0,15\lambda$.

Напряжения можно представить через потенциалы φ и ψ , и аналогично вычислению перемещений, выразив посто-

янные *B*₁ и *A* через *B*₂, после взятия вещественных частей получим

$$\begin{split} &-\mu \frac{\eta_2}{\eta_1} \bigg(\frac{f^2 - \eta_2^2}{f^2 - \eta_1^2} \bigg) \big(k^2 + \eta_1^2 - 2\eta_1^2 k^2 L^2 + \eta_1^4 L^2 + k^4 L^2 \big) e^{-\eta_1 y} + \\ &+ \mu \big(k^2 + \eta_2^2 - 2\eta_2^2 k^2 L^2 + \eta_2^4 L^2 + k^4 L^2 \big) e^{-\eta_2 y} \bigg] \cos \big(kx - \omega t \big); \\ &\mu_y = 2B_2 L^2 \mu \eta_2 \big(f^2 - \eta_2^2 \big) \big(e^{-\eta_2 y} - e^{-\eta_1 y} \big) \cos \big(kx - \omega t \big); \\ &\mu_x = 2B_2 L^2 \mu f \big(f^2 - \eta_2^2 \big) \bigg(\frac{\eta_2}{\eta_1} e^{-\eta_2 y} + e^{-\eta_1 y} \bigg) \sin \big(kx - \omega t \big). \end{split}$$

Зависимости амплитуд напряжений σ_{yy} , σ_{xx} , σ_{yx} , σ_{xy} и моментных напряжений μ_x , μ_y в поверхностной волне от глубины приведены на рис. 3, *a*. Кривые представлены в безразмерной форме: амплитуды напряжений и моментных напряжений отнесены к амплитуде нормального напряжения на поверхности $\sigma_{xx|y=0}$, $\mu_{x|y=0}$; глубина отложена в долях длины волны. Амплитуда σ_{xx} меняет знак, тогда как амплитуды σ_{yy} и σ_{yx} достигают максимумов приблизительно при $y = 0,2\lambda$, затем экспоненциально убывают с глубиной. Тензор напряжений является несимметричным ($\sigma_{yx} \neq \sigma_{xy}$).

Рис. 3. Зависимости амплитуд напряжений $\sigma_{xx} / \sigma_{xx|y=0}$ (1), $\sigma_{xy} / \sigma_{xx|y=0}$ (2), $\sigma_{xy} / \sigma_{xx|y=0}$ (3), $\sigma_{yy} / \sigma_{xx|y=0}$ (4) и моментных напряжений $\mu_x / \mu_{x|y=0}$ (5), $\mu_u / \mu_{x|y=0}$ (6) в поверхностной волне от глубины (*a*), зависимости амплитуд напряжений $\sigma_{xx} / \sigma_{xx|y=0}$ (1), $\sigma_{xy} / \sigma_{xx|y=0}$ (2), $\sigma_{xy} / \sigma_{xx|y=0}$ (3), $\sigma_{yy} / \sigma_{xx|y=0}$ (4) в поверхностной волне от глубины в классическом случае (6) (при L = 0)

Зависимости амплитуд напряжений $\sigma_{xx}, \sigma_{xy}, \sigma_{yx}, \sigma_{yy}$ в поверхностной волне от глубины в классическом случае (при L = 0) приведены на рис. 3, *б*. Кривые представлены в безразмерной форме. Тензор напряжений стал симметричным, так как совпали амплитуды напряжений σ_{xx}, σ_{yx} , которые достигают максимума приблизительно при $y = 0, 2\lambda$.

Приведенная на рис. 2, 3 совокупность кривых иллюстрирует, что поверхностная волна локализована в тонком поверхностном слое.

Заключение. Показано, что скорость поверхностной волны, распространяющейся вдоль свободной границы градиентно-упругого полупространства, может превосходить скорость объемной сдвиговой волны, вычисляемую как радикал отношения модуля сдвига к плотности материала. Однако в рассматриваемой среде сдвиговая волна также обладает дисперсией и значение указанной скорости является лишь нижним пределом ее фазовой скорости. Таким образом, в градиентно-упругой среде фазовая скорость поверхностной волны не может превосходить фазовую скорость объемной сдвиговой волны, но при определенных значениях волнового числа может достигать ее.

В заключение отметим, что при возбуждении свободного края двумерных и трехмерных упругих тел, а также при кромочном контакте различных материалов, наряду с волнами Рэлея, возможно существование изгибных волн рэлеевского типа (волны Коненкова) [19–24]. Для элементов конструкций, материалы которых подчиняются законам градиентной теории упругости, такие волны ждут своих исследователей.

ЛИТЕРАТУРА

1. *Lord Rayleigh*. On waves propagated along the plane surface of an elastic solid // Proceedings of the London Mathematical Society. 1885. Vol. s1-17. No. 1. P. 4–11. DOI: 10.1112/plms/s1-17.1.4

2. *Аки К., Ричардс П.* Количественная сейсмология. Теория и методы. Т. 1, Т. 2. М.: Мир, 1983. 520 с., 360 с.

3. *Ермолов И.Н., Ланге Ю.В.* Неразрушающий контроль. Т. 3. Ультразвуковой контроль. М.: Машиностроение, 2004. 864 с.

4. Углов А.Л., Ерофеев В.И., Смирнов А.Н. Акустический контроль оборудования при изготовлении и эксплуатации. М.: Наука, 2009. 280 с.

5. *Maugin G.A., Metrikine A.V., ed.* Mechanics of generalized continua: on hundred years after the cosserats. Springer, 2010. 338 p.

6. *Altenbach H., Maugin G.A., Erofeev V., eds.* Mechanics of generalized continua. Berlin–Heidelberg: Springer-Verlag, 2011. 352 p.

7. *Altenbach H., Forest S., Krivtsov A., eds.* Generalized continua as models with multi-scale effects or under multi-field actions. Springer, 2013. 331 p.

8. *Altenbach H., Eremeyev V.A., eds.* Generalized continua — from the theory to engineering applications. Springer, 2013. 387 p.

9. Bagdoev A.G., Erofeyev V.I., Shekoyan A.V. Wave dynamics of generalized continua. Springer, 2016. 274 p.

10. *Altenbach H., Forest S., eds.* Generalized continua as models for classical and advanced materials. Springer, 2016. 457 p.

11. Maugin G.A. Non-classical continuum mechanics. Springer, 2017. 259 p.

12. *Le Roux J.* Etude geometrique de la flexion, dans les deformations infinitesimaleg d'nn milien continu // Ann. Ecole Norm. Super. 1911. Vol. 28. P. 523–579.

13. *Le Roux J.* Recherchesg sur la geometrie beg deformatios finies // Ann. Ecole Norm. Super. 1913. Vol. 30. P. 193–245.

14. *Jaramillo T.J.* A generalization of the energy function of elasticity theory. Dissertation. Department of Mathematics, University of Chicago, 1929. 154 p.

15. *Сабодаш П.Ф., Филиппов И.Г.* О воздействии подвижной нагрузки на упругое полупространство с учетом моментных напряжений // Прочность и пластичность. М.: Наука, 1971. С. 317–321.

16. *Ерофеев В.И*. Волновые процессы в твердых телах с микроструктурой. М.: Изд-во МГУ, 1999. 328 с.

17. Новацкий В. Теория упругости. М.: Мир, 1975. 872 с.

18. *Герасимов С.И., Ерофеев В.И., Солдатов И.Н.* Волновые процессы в сплошных средах. Саров: Изд-во РФЯЦ-ВНИИЭФ, 2012. 260 с.

19. *Коненков Ю.К.* Об изгибной волне рэлеевского типа // Акустический журнал. 1960. Т. 6. № 1. С. 124–126.

20. Зильберглейт А.С., Суслова И.Б. Контактные волны изгиба в анизотропных пластинах // Акустический журнал. 1983. Т. 29. № 2. С. 186–191.

21. Белубекян М.В., Енгибарян И.А. Волны, локализованные вдоль свободной кромки пластины с кубической симметрией // Известия РАН. Механика твердого тела. 1996. № 6. С. 139–143.

22. Захаров Д.Д. Волны Коненкова в анизотропных слоистых пластинах // Акустический журнал. 2002. Т. 48. № 2. С. 205–210.

23. Вильде М.В., Каплунов Ю.Д., Коссович Л.Ю. Краевые и интерфейсные резонансные явления в упругих телах. М.: Физматлит, 2010. 280 с.

24. Приказчиков Д.А., Томашпольский В.Я. Вынужденные краевые колебания предварительно деформированных упругих тел со смешанными граничными условиями на лицевых поверхностях // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2011. № 2. С. 66–77.

Антонов Артем Михайлович — аспирант Института проблем машиностроения Российской академии наук (ИПМ РАН) (Российская Федерация, 603024, Нижний Новгород, ул. Белинского, д. 85).

Ерофеев Владимир Иванович — д-р физ.-мат. наук, профессор, директор Института проблем машиностроения Российской академии наук (ИПМ РАН) (Российская Федерация, 603024, Нижний Новгород, ул. Белинского, д. 85).

Просьба ссылаться на эту статью следующим образом:

Антонов А.М., Ерофеев В.И. Волна Рэлея на границе градиентно-упругого полупространства // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2018. № 4. С. 59–72. DOI: 10.18698/1812-3368-2018-4-59-72

RAYLEIGH WAVE ON THE BOUNDARY OF GRADIENT-ELASTIC SEMI-SPACE

A.M. Antonov V.I. Erofeev artem.antonov@autorambler.ru erof.vi@yandex.ru

Mechanical Engineering Research Institute, Russian Academy of Sciences, Nizhny Novgorod, Russian Federation

Abstract	Keywords
In recent years, Rayleigh waves of the ultrasonic range have found wide application. By means of these waves it	Gradient-elastic semi-space, surface
is possible to monitor the state of the surface layer of a	potential frequency
sample (revealing surface and near surface defects in	perennin, j. equency
samples of metal, glass, plastic and other materials –	
ultrasonic surface flaw detection). The influence of the	
properties of the surface layer of the sample on velocity	
and damping of Rayleigh waves allows using the latter to	
determine the residual stresses of the surface layer of the	
metal, the thermal and mechanical properties of the	
surface layer of the sample. Along with the model of the	
classical continuum, the models of generalized continua	
are widely used in the mechanics of a deformed rigid	
body. In particular, the gradient-elastic medium belongs	
to the number of generalized continua. The article focuses	
on the mathematical model of the generalized continuum	
called gradient-elastic medium, whose stress-strain state	
is described by the deformation tensor, second gradients	
of the displacement vector, the asymmetric stress tensor	
and the couple stress tensor. In the two-dimensional	
formulation, the problem of propagation of an elastic	
surface wave on the boundary of the gradient-elastic	
semi-space is considered. The solution of the equations is	
sought in the form of a sum of scalar and vector poten-	
tials, and the vector potential has only one component	
different from zero. It is shown that such a wave, unlike	
the classical Rayleigh wave, has dispersion. The depen-	
dence of phase velocity of the surface wave on the wave	
number is calculated and compared with the dispersion	
characteristic of phase velocity of the sheer volume wave.	D : 101000017
ine stresses and displacements arising in the zone of	Received 01.09.2017
surface wave propagation are calculated	© BMSTU, 2018

This work was supported by the Russian Science Foundation (grant no. 14-19-01637)

REFERENCES

[1] Lord Rayleigh. On waves propagated along the plane surface of an elastic solid. *Proceedings of the London Mathematical Society*, 1885, vol. s1-17, no. 1, pp. 4–11. DOI: 10.1112/plms/s1-17.1.4

[2] Aki K., Richards P.G. Quantitative seismology: theory and methods. W.H. Freeman & Company, 1980, 700 p.

[3] Ermolov I.N., Lange Yu.V. Nerazrushayushchiy kontrol'. T. 3. Ul'trazvukovoy kontrol' [Non-destructive inspection. Vol. 3. Ultrasound control]. Moscow, Mashinostroenie Publ., 2004. 864 p.

[4] Uglov A.L., Erofeev V.I., Smirnov A.N. Akusticheskiy kontrol' oborudovaniya pri izgotovlenii i ekspluatatsii [Acoustic control on equipment at manufacturing and operation]. Moscow, Nauka Publ., 2009. 280 p.

[5] Maugin G.A., Metrikine A.V., ed. Mechanics of generalized continua: on hundred years after the cosserats. Springer, 2010. 338 p.

[6] Altenbach H., Maugin G.A., Erofeev V., eds. Mechanics of generalized continua. Berlin, Heidelberg, Springer-Verlag, 2011. 352 p.

[7] Altenbach H., Forest S., Krivtsov A., eds. Generalized continua as models with multi-scale effects or under multi-field actions. Springer, 2013. 331 p.

[8] Altenbach H., Eremeyev V.A., eds. Generalized continua — from the theory to engineering applications. Springer, 2013. 387 p.

[9] Bagdoev A.G., Erofeyev V.I., Shekoyan A.V. Wave dynamics of generalized continua. Springer, 2016. 274 p.

[10] Altenbach H., Forest S., eds. Generalized continua as models for classical and advanced materials. Springer, 2016. 457 p.

[11] Maugin G.A. Non-classical continuum mechanics. Springer, 2017. 259 p.

[12] Le Roux J. Etude geometrique de la flexion, dans les deformations infinitesimaleg d'nn milien continu. *Ann. Ecole Norm. Super.*, 1911, vol. 28, pp. 523–579.

[13] Le Roux J. Recherchesg sur la geometrie beg deformatios finies. *Ann. Ecole Norm. Super.*, 1913, vol. 30, pp. 193–245.

[14] Jaramillo T.J. A generalization of the energy function of elasticity theory. Dissertation. Department of Mathematics. University of Chicago. 1929. 154 p.

[15] Sabodash P.F., Filippov I.G. O vozdeystvii podvizhnoy nagruzki na uprugoe poluprostranstvo s uchetom momentnykh napryazheniy. Prochnost' i plastichnost' [On the effect of a moving load on elastic half-space taking into account moment stresses. In: Strength and plasticity]. Moscow, Nauka Publ., 1971. Pp. 317–321.

[16] Erofeev V.I. Wave processes in solids with microstructure. World Scientific, 2003. 256 p.

[17] Novatskiy V. Teoriya uprugosti [Elasticity theory]. Moscow, Mir Publ., 1975. 872 p.

[18] Gerasimov S.I., Erofeev V.I., Soldatov I.N. Volnovye protsessy v sploshnykh sredakh [Wave processes in continuous media]. Sarov, Izd-vo RFYaTs-VNIIEF Publ., 2012. 260 p.

[19] Konenkov Yu.K. On normal modes of flexural waves in a plate. *Akusticheskiy zhurnal*, 1960, vol. 6, no. 1, pp. 124–126 (in Russ.).

[20] Zil'bergleyt A.S., Suslova I.B. Contact bending wave in anisotropic plates. *Akusticheskiy zhur-nal*, 1983, vol. 29, no. 2, pp. 186–191 (in Russ.).

[21] Belubekyan M.V., Engibaryan I.A. Waves, localized along the free plate edge with cubic symmetry. *Izvestiya RAN. Mekhanika tverdogo tela*, 1996, no. 6, pp. 139–143 (in Russ.).

[22] Zakharov D.D. Waves in anisotropic layered plates. *Akusticheskiy zhurnal*, 2002, vol. 48, no. 2, pp. 205–210 (in Russ.).

[23] Vil'de M.V., Kaplunov Yu.D., Kossovich L.Yu. Kraevye i interfeysnye rezonansnye yavleniya v uprugikh telakh [Edge and interface resonant phenomena in elastic bodies]. Moscow, Fizmatlit Publ., 2010. 280 p.

[24] Prikazchikov D.A., Tomashpol'skiy V.Ya. Forced edge vibrations in pre-stressed elastic solids subject to mixed face boundary conditions. *Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki* [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2011, no. 2, pp. 66–77 (in Russ.).

Antonov A.M. — post-graduate student, Mechanical Engineering Research Institute, Russian Academy of Sciences (MERI RAS) (Belinskogo ul. 85, Nizhny Novgorod, 603024 Russian Federation).

Erofeev V.I. — Dr. Sc. (Phys.-Math.), Professor, Director of the Mechanical Engineering Research Institute, Russian Academy of Sciences (MERI RAS) (Belinskogo ul. 85, Nizhny Novgorod, 603024 Russian Federation).

Please cite this article in English as:

Antonov A.M., Erofeev V.I. Rayleigh Wave on the Boundary of Gradient-Elastic Semi-Space. *Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki* [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2018, no. 4, pp. 59–72 (in Russ.). DOI: 10.18698/1812-3368-2018-4-59-72

