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Abstract Keywords 
In previous two parts of the article, one-dimensional (1D) 
scattering processes were taken into detailed consideration. 
All main typical 1D scattering problems of different com-
plexities were discussed and solved using different ap-
proaches. It gave the opportunity to find ways to improve 
the theory, two-fluxes Kubelka — Munk approach, in 
particular. It was shown that scattering and absorption 
processes inside the light-scattering medium are not inde-
pendent, so the formulation of first coefficients of trans-
port differential equations as the simplest sum of scattering 
and absorption coefficients is wrong. Inaccuracy in this 
formulation leads to inaccuracies in results. In this final 
part of the article, as a completion, the analysis of some 
spatial light-scattering problems, mainly two-dimensional 
(2D) problems as the simplest multidimensional problems 
for consideration, is presented. The detailed analysis of 
several important 2D approximations, such as a pure 
backscattering approximation, single-scattering one for a 
pencil-like beam, and an orthogonal-scattering approach 
opens the way to have a new look at several nuances of 
formulation of the 2D or 3D initial transport equations, as 
well. For example, a new unknown form of the radiative 
transport equation of the fourth-order is proposed for the 
case of the orthogonal scattering approach 
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Introduction. Much more real and close to realistic practical problems are spatial 
two-dimensional (2D) or three-dimensional (3D) scattering models. In the general 
case of the real 3D space, classic stationary Radiative Transport Equation (RTE) has a 
form with more numbers of independent spatial variables than it was used under 1D 
approximations. For the 3D space, besides x, y, z Cartesian coordinates, two spatial 
angles come into a play — polar angle  and azimuthal one  [1]: 
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As usual for RTE, here we denoted: sin( )d d d [sr] — the differential ele-
ment of a solid angle, I( , s) [W sr−1 m−2] is the radiance depending in general both on 
the coordinate vector  = {x, y, z} and the directional unit vector s = {sx, sy, sz} where 

2 2 2 1,x y zs s s  p(s, s ) is the phase scattering function describing the scattering indi-
catrix from a direction s  to the direction s. Phase scattering function obeys the nor-
malization procedure: 
 

4
( , ) 1.p ds s  (2) 

The main difference of the RTE (1) from any ordinary differential equations be-
fore used consists in the necessity of integration of the scattered optical field over a 
spatial solid angle. This makes the problem much more complex. Another aspect is 

associated with the assessment of partial derivatives, because ( , ) grad[ ( , )]dI I
d

s s s
s

 

is the directional derivate. It is well-known that Eq. (1) is too common and too com-
plex to be solved analytically in a closed form. Despite the long-term development of 
light transport and scattering theory (LT&ST), there are a few approximations only, 
for example, diffusion approximation [2−4], that allow the analytical solution in a 
number of practically important cases. In practice, a special requirement for such a 
solution is that it should describe at least backscattering radiance or a transmitted one 
on boundaries of the medium in the explicit closed analytical form, which allows an 
accurate and fast next solution of the inverse problem of the optics of turbid media, 
since the vast majority of diagnostic equipment, especially in biomedical optics [5], 
detect these radiation for the purpose to solve the inverse optical task, i. e., to obtain 
optical properties of the medium using the registered fluxes on the next step of data 
processing [6]. In the light of this statement, other approaches, apart from the exact 
analytical solutions, are not quite applicable. The Monte Carlo (MC) method of statis-
tical simulations, for example, lacks clarity and consumes a lot of computing time that 
does not allow creating real-time diagnostic systems for medicine. The MC-based real 
time inverse optical task solution is impossible. In addition, it does not provide a solu-
tion in a form of a closed analytical expression, which could be easily analyzed for 
how one or another optical parameter of the medium of light propagation affects the 
final registered boundary radiation. The diffusion approximation, most popular today 
in biomedical optics, lacks the required precision near the frontal surface [1], i. e. it is 
not quite applicable for backscattering measurement techniques near the area of  
illumination. And so on. That is why the issue of finding new approaches to rigorous 
solutions of 3D problems is a subject of a study throughout all last decades [7−11 and 
others]. 

Reducing the RTE (1) to a 2D equivalent equation leaves not two, but three inde-
pendent spatial variables, for example x, y, and θ. It simplifies the problem, but not so 
much. In this part of the article, due to the limited volume of it, we restrict ourselves 
to the problems of 2D cases only. Extension of the 2D ideas to a 3D problem consi-
deration is not as difficult as the way from the 1D to a 2D level. Also, we will not bring 
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the presentation to the level of a detailed description of full completed solutions of all 
possible 2D problems, as we did it for 1D problems, because our aim is to study the 
fundamentals of the theory, not to obtain final solutions for all applied tasks. We 
would rather like to understand better, how we could improve the theory, or how to 
find new approaches to solve the problem in the proper analytical way, than to solve 
any specific kind of problems in any way.  

Any theoretical studies always are more effective and preferable when it starts 
from the simplest formulation of a problem and from the simplest approaches to find 
a solution. We have never came across previously in publications some detailed analy-
sis of various simplest 2D models of scattering, like exist for 1D problems. Therefore, 
we decided to fill the gap by ourselves. For this part of the article, we have selected a 
number of the most interesting cases, which we considered as good examples to clari-
fy several specialties existing in the multidimensional problem formulation. We hope 
they may encourage the emergence of new ideas and approaches in LT&ST. Also, we 
have to repeat that we are working in the field of biomedical optics [12], so examples 
and problems for turbid biological tissues are more habitual to us. We will use them 
in this part of the article, as previously. However, our results are also applicable to 
other light scattering media — clouds, milk glasses, turbid liquids, etc. They are not 
limited to biological tissues and media only.  

Simplest 2D case without angular scattering. Bringing the gap between 1D and 
2D problems, as the first step there is the reason to study the simplest extension of the 
1D Kubelka — Munk (KM) model to a 2D level. Attempts of the extension of 1D KM 
approach to solve multidimensional problems have been made in a number of recent 
excellent studies [11]. Unlike the approaches considered, in this section to study fun-
damentals of the theory in detail we offer for consideration a particular case of the 2D 
turbid media with the absence of angular scattering. We assume the only presence of a 
backscattering process inside the 2D medium. This model is the most close to the ini-
tial KM approximation, and does not involve any integrals in the initial differential 
equations, that simplifies the solution very much. In the previous part of the article, 
we have shown the possibility of obtaining exact solutions based on the improved KM 
approach, so we can expect that in the 2D case it will be effective, as well.  

Our schematic representation of the 2D turbid medium with scattering and ab-
sorption will still be as presented in Figures 1−2, part 2 [13], however the main diffe-
rences now is that the medium has the second dimension ''Y'', as well as the incident 
radiation f0(y) is the 2D flux density with the dimension [W m−1], so the internal un-
known functions are the flux densities f+(x, y) and f−(x, y) [W m−1], as well. Figure 1 
explains the model. 

Because of the absence of angular scattering, only a set of ''straight light rays'' 
(f+(x, y) and f−(x,y)) will propagate in the medium. Therefore, the solution of the im-
proved KM system (Eqs. (15) in Ref. [13]) is also valid in this model. However, the 
solution now is:  

 1 2( , ) ( ) ( ) ;x xf x y C y e C y e     1 2( , ) ( ) ( ) ,x xf x y C y A e C y A e  (3) 
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where constants of integration Ci are now some functions of the second spatial coor-
dinate y. They could be determined from the boundary conditions, for example:  

 f+(0, y) = f0 (y)  and  f−(H0, y) = 0. 

Fig. 1. Schematic representation of the 2D scattering problem without angular scattering 
 
This simplest case without angular scattering is quite a good approach at single 

scattering approximation (SSA) inside strong absorbing media, where the long path 
length will lead to near full absorption of propagating radiation. 

Remembering that second terms in the right-hand parts of the Eqs. (3) describe 
the reduction of the functions due to the limited medium length H0, to simplify the 
solution we can consider a semi-infinite medium. It yields the solution in the simple 
form as follows:  

 0( , ) ( ) ;xf x y f y e  0( , ) ( ) .xf x y f y A e  (4) 

Why this result is interesting for us? It allows one to analytically derive any direc-
tional derivatives of f+(x, y) or f−(x, y) along any given vector  to test the general RTE 
(1). Is the general RTE valid for this 2D backscattering problem? If ,  then any 
spatial coordinates can be written as cos ,x  sin ,y  that yields, for example, 
for f+( ): 

 0
0

( , ) ( )( )cos( ) sin( ) ,x xdf x y f yf y e e
d y

 (5) 

or, replacing the spatial variables (see Fig. 1): 

 0 0 coscos
0 0

0

( ) ( sin )cos( ) ( sin ) sin( ) .
( sin )

df f yf y e e
d y

 (6) 

We see, that Eqs. (5), (6) quite differ from the general RTE (1). From the physical 
point of view, in this model, there is not any light power propagation in the direction 
, so we cannot formulate a priory a power loss along . However, as we have seen, the 

directional derivative Eq. (5) exists. Moreover, it is determined by the partial deriva-
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tive of the incoming external flux density 0( ),f y
y

 that is not so evident from RTE (1). 

Since from the first equation of Eqs. (4) we have 

 cos
0 0( ) ( sin ) ,f f y e  (7) 

then even in the case of the absence of scattering ( S = 0) when  = a, we cannot 
formulate Eq. (6) in the form  

 cos
0 0

( ) ( ) ( sin ) ,df f f y e
dτ

 (8) 

as it is required from RTE (1), because it is not correct in comparison with Eq. (6). 
Thus, the general RTE (1) is not valid for this simple scattering model, though the 
model is applicable for a description of real photometric measurement results. In our 
opinion, it proves that RTE is not applicable for all cases of scattering problems, as 
well as opens the way to seek new scattering models, which can have exact analytical 
solutions in the closed form of expressions like Eqs. (4), but which are not directly 
based on the classic RTE (1). 

Pencil-like beam and a single scattering approximation. One more model, 
which has a quite simple representation and a closed-form solution, describes the sin-
gle scattering approximation (SSA) for the pencil-like beam (δ-beam) which illumi-
nates the 2D medium (Figure 2). In this model, the initial -beam F0 [W] penetrates 

the medium and propagates as a radiant flux F+(x) along the X-axis undergoing both 
scattering and absorption. At SSA, as we already know from 1D problems, a reduced 
radiant flux F+(x) has the form [14]: 

 ( ln(1 ))
0( ) ,a R xF x F e  (9) 

Fig. 2. Model of SSA for the pencil-like beam illuminating the 2D medium 
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where R in this 2D model determines a total fraction of the radiant flux F+(x), which is 
scattered on each heterogeneity in all spatial directions along the flux's path inside the 
medium. 

The scattered field is now the scalar field I(x, y, ) of the radiant intensity or of 
the radiance with dimensions [W sr−1] or [W sr−1 m−2] respectively, which for all 2D 
cases are reduced to [W rad−1] or [W rad−1 m−1]. These dimensions differs from the 
dimension of the incident radiant flux F0 or of the internal F+(x) [W], so for the 
transmitted radiation along the X-axis one need to consider two components of radia-
tion: reduced radiant flux F+(x) and a series of appeared radiance or radiant intensities 
I(x, 0, ) [1], which are scattered in the forward hemisphere. In general, this aspect is 
also missed in RTE (1). 

The magnitude of I(x, y, ) for each direction  and for each single scatterer is de-
termined by the 2D scattering phase function p( ) [rad−1], more exactly — by the 
product R p( ), if the phase function obeys the normalization procedure in the form 
of its integration in respect to the variable angle  over the closed domain in the 2D 
space [0, 2 ]: 

 
2

0
( ) 1.p d  (10) 

It should be specially noted, that the magnitude of the radiant intensity 
( , 0, ) ( ) ( )I x Rp F x  along the X-axis reflects the scattering field for a point-like 

single source of radiation (a particle in the classic theory) lying on the X-axis. Howe-
ver, the total fraction of F+(x) scattered along x depends not only on parameters R 
and p( ), but on the density of heterogeneities μ  [m−1], as well. There is a complex 
combined process, as we understand it now. Moreover, as it was shown in previous 
parts of the article [13, 15], the classic product Rp( )  [1] for description of this pro-
cess is wrong. So to obtain I(x, 0, ) for the elementary small dx containing a set of 
scatterers (particles), for example, for the backward hemisphere direction, one should 
first start the procedure for finding the limit: 

 *
2

0

( , 0, ) ( , 0, )lim ( ) ( ),
x

I x I x F x
x x

 (11) 

where *
2( ) is the side-scattering coefficient [rad−1 m−1], which determines the angu-

lar scattering inside dx in the backward hemisphere. The right-hand part of the  
Eq. (11) is the 2D radiance [W rad−1 m−1] of the element dx as of a secondary source of 
radiation. To avoid unnecessary detailing  here,  assume for this step  *

2 2( ) ( ),
where 2 is the backscattering coefficient at SSA in 1D problems [13]. After all, with the 
use of Eqs. (9) and (11), the solution for the radiant intensity I(x, y, ) at any point of 
this 2D turbid media should not pose any serious difficulties. It is necessary only to take 
into consideration the exponential attenuation of I(x, 0, ) along its next pathway after a 
formation on the X-axis.  
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For example, the scattered radiant intensity I(0, y, ) escaping the frontal surface 
of the medium, excepting the backscattered one I(0, 0, 0), in this case has the closed 
analytical form, comparable to the Ref. [13], Eq. (8): 

 
cos* ( ln(1 ))2 sin( )sin0

( )(0, , )
2 ln(1 )

aa
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R y
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yR

a
F e

R
  (12) 

For any extreme cases of   0 at y  0 one can obtain I(0, y, 0) = 0. However, for 
the extreme case of  = 0 at y = 0, the I(x, 0, 0) exists. There are a variety of heteroge-
neities along X-axis, which scatter radiation in the back direction (  = 0). Using  
Eq. (8) and Eq. (11) of the part 2 [13], for semi-infinite medium one can find for  
I(0, 0, 0) the similar equation, as it was obtained for F−(0) in the 1D case, but accurate to 
the accepted value of *

2( ).  The main difference is only appeared in dimensions of 
quantities ([W] and [W rad−1]) due to the angle scattering in the 2D case. The similar 
approach should be applied to calculate the forward-scattered radiant intensity I(x, 0, ).  

In our opinion, the result Eq. (12) is remarkable in two ways. First, since it has a 
closed-form analytical expression, it can be theoretically analyzed as it is shown, for 
example, in Fig. 3. 

Fig. 3. 2D Radiant intensity I(0, y, ) for semi-infinite 2D medium at F0 = 1 W, R = 0.4,  

                                         a = 0.1 mm−1,   = 0.5 mm−1, 21( ) (1 cos )
3

p  

 
One can see, that for comparable short distance ''y'' from the point of illumina-

tion (y < 1 mm), the radiant intensity I(0, y, ), if y  0, has quite uniform distribution 
per angle  for the given Rayleigh phase function with a local maximum at small  
angles  < 30 . The more distance we take into consideration, the more magnitude of 
the intensity is shifted to larger angles. This dependence is a function of R, a, ρ, and 
p( ), so these optical properties can be studied by means of angular measurements of 
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the radiant intensities I(0, y, ) escaping the medium at large distances from the point 
of illumination. It should be remembered only, that any measurements are carried out 
in the receive aperture  (practically, it is impossible to measure pure I(0, y, )), so 
the integration of I(0, y, ) over the aperture angle  is required.  

Then, since Eq. (12) is a closed-form analytical expression, like it was done in the 
previous section, we can try to derive a directional derivate for each I(x, y, ) for the 
purpose of comparison of the equation with the general RTE (1). If, for instance, we 
select a direction  in Fig. 2 from the right lower corner up to the left top corner, and 
schematically depict the intensity I( ) = I(x, y, ) as a function of  sin , we get the 
following approximate picture (Figure 4). 

Fig. 4. Formation of a fracture point for a curve I( ) at crossing the line y = 0 due to the  
                                                          pencil-like beam illumination and SSA 

Once again we see the non-differentiable function at the point  sin  = 0, so the 
general RTE for I( ) is not valid in this point. To avoid the line y = 0, i. e., the X-axis, 
we need to formulate two similar differential equations separately for both a left-hand 
side and a right-hand side I( ) together with corresponding conjugation conditions 
along the X-axis where y = 0. Thus, we have found out, that for such a simple formu-
lation of the 2D problem, we should define a number of differential equations, at least 
four if to take into consideration the specialties of formation of I(0, 0, 0), I(0, 0, ), 
and F+(x). There is not a single equation to solve the problem properly for all quanti-
ties, which are interesting to us. 

Approximation of the orthogonal scattering. Now we are close to the question, 
how other forms of RTE, more precisely describing the problems, can be formed in a 
number of practically important cases. Previously it was shown, that another form of 
RTE could exist for a slab geometry [8]. This section proposes a new approach for the 
2D orthogonal-scattering model (OSM) [14]. We will use the multi-fluxes KM ap-
proach, similar to [7], with optical properties of the medium in the definition of  
Eqs. (17a), (17b), part 2 [13]. It is assumed a 2D OSM, i. e., in both ''x'' and ''y'' direc-
tion two flux densities [W m−1] propagate only, forward fi+(x, y) and backward fi−(x, y) 
ones (Figure 5), where i = x or i = y. In the medium, the light scattering takes place as 
the backscattering or orthogonal-scattering (fx(x, y)  fy(x, y)) events only. 
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Fig. 5. Fluxes inside the turbid tissue  
                             for OSM 
 

It gives the following system of four partial differential equations: 
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where 1, 2, 3 are attenuation, backscattering, and lateral-scattering coefficients  
respectively. This system can be resolved analytically with the use of the standard 
technique of multiples derivatives and of reduction of the system to one differential 
equation of the fourth-order. The first step, for example, for the system (13) in this 
way is to differentiate the first and the second equations for у, and the third and  
the fourth equations for x. Then, by a substitution of the initial equations for the  
corresponding derivatives of the first-order into the new system of the second-order 
equations, one can reduce the number of unknown functions. Repeating the process 
three times, leaving only, for example, fx+(x, y), it is not so difficult to obtain the final 
RTE for OSM in the form: 

  
4 2 2

2 4 2 2
1 232 2 2 2

( , ) ( , ) ( , ) 4 ( ) ( , ) 0,x x x
x

f x y f x y f x y f x y
x y x y

 (14) 

where, as previously, 2 2
1 2 .  As one can see, this form is much differ from the 

classic RTE, but is more reasonable. Comparing to the classic KM equations, we have 
to note, that the more directions of light propagation we consider, the more order of 
the final differential equation we have. Why the standard RTE is the single first-order 
differential equation, if even in the case of 1D approach, we have the system of two 
differential equations, so that the final equation is of the second order for each flux 
[13]? In our opinion, the standard RTE (1) contains the main draft heuristic idea 
about the ray changing along the path of its propagation, but it is not enough to solve 
the problem. To solve the problem, it is necessary to formulate the problem in the 
correct completed form. 
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The analytical partial solution of the Eq. (14) for each fluxes is [15]: 

 1 2 3 4( , ) ( )( ),tx tx ty ty
i i i i if x y C e C e C e C e  (15) 

where Cik — constants, which depend on boundary conditions, and 
2

3 1 22 ( ).t  In this solution, the main problem is still the same — non-
differentiable equations in some points of the medium. For example, for the pencil-
like illuminating beam the radiative flux density distribution in this model is still 
piecewise (stepwise) with indefinite derivatives in breaking points of the first order 
along the line y = 0 (Figure 6). 

Fig. 6. Radiative flux density distribution in the 2D model of orthogonal scattering (OSM) 
 
What is also important in the 2D OSM problem — it is the stepwise character of 

the breaking points in the macroscopic scale of the medium. If in 1D formulation we 
have seen the piecewise character in the microscopic scale of the turbid medium due 
to the existence of heterogeneities inside the medium [13, 15], then here we saw the 
same problem on the macro-level, but due to the nuances of external illumination. 
Therefore, the problem of the proper boundary condition formulation is also very 
important. It can be resolved, for example, with the use of the rough surface diffrac-
tion technique [16, 17], but it is a completely other problem. 

General conclusion. The light transport and scattering theory (LT&ST) is widely 
used today in biomedical optics, ocean optics, optics of atmosphere, etc. However, it is 
well-known that there are difficulties with the analytical and closed-form solution of 
the classic radiative transport equation (RTE). In general, RTE does not have the ana-
lytical solution. As we have reported in our previous publications, the problem parti-
cular follows from the not quite correct formulation of main equations in LT&ST for 
a number of applications. In this article, we tried to prove some of these assumptions 
from ''first principles'', describing, first, step by step, a number of different models of 
1D problems. In this way, it was shown that the scattering coefficient is rather a pa-
rameter of the approach used, of the approximation, than of the optical properties of 
the medium. It depends not only on real optical properties of a turbid medium, but 
also on the mathematical formulation of the problem. The scattering coefficient is the 
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parameter, which was introduced by researchers to describe the scattering process as a 
continuous photometric process using appropriate mathematical tools. Therefore, in 
different tasks it can vary and needs an accurate definition. Based on this result, the 
1D Kubelka — Munk (KM) approach was cardinally improved. It was shown, that 
there are a number of tasks where we cannot separate absorption and scattering coef-
ficients (K and S in the KM notations and a and s in the RTE ones) in the extinction 
coefficient in RTE. Such a superposition of scattering and absorption coefficients was 
a direct consequence of the accepted phenomenological formalism about indepen-
dence of absorption and scattering processes. It was not proved previously, just theo-
retically assumed and accepted. However, now we have rigorously proved that ab-
sorption and scattering processes are not independent. It allowed us to improve the 
theory. More correct formulation of the extinction coefficient, for example, in appli-
cation to the classical two-flux Kubelka — Munk (KM) approach, which is a good 1D 
limit for the general RTE, allowed us to obtain the exact analytical solution for 
boundary radiant fluxes (backscattered and transmitted ones), contrary to the classic 
KM approximation. These fluxes are registered by diagnostic equipment in experi-
ments, in that number in biomedical applications, so this result is very important for 
the practical usage. In addition, such a result leads to a necessity to revise a number of 
basic definitions of optical properties of turbid media. Scattering coefficient and albe-
do are the most important in this sense. It was visible shown in the paper that the 
magnitude of albedo can differ for the classical and for the offered new definitions.  

Development of all these ideas and approaches for two (2D) or more dimensional 
problems opened the way to have a new look at several nuances of formulation of the 
2D or 3D initial transport equations. For example, new form of RTE (14) was derived 
in the study for the case of orthogonal scattering approximation. It is the fourth-order 
differential equation contrary to the classic RTE, and it has a closed form exact analy-
tical solution. The classic RTE is shown in the study to be not applicable for all cases 
of 2D scattering problems. It proves the statement that the standard RTE (1) contains 
the main draft heuristic idea about the ray changing along the path of its propagation 
only, but it is not enough to solve the problem. To solve the problem, it is necessary to 
formulate the problem in the correct completed form. In a total, in our opinion, such 
a look offered allows one to understand better some fundamentals of LT&ST, for  
example, a mechanism of formulation of accurate initial equations for different prob-
lems, finding out several new ways to improve and to develop the theory. Mainly, it 
highlights the way for the paradigm switching in LT&ST, the way to jump from the 
search for new solutions and approximations for original RTE to the search for and to 
the formulation of new closed systems of equations, which accurate describe a prob-
lem in the completed form, and which have an exact analytical solution. 
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