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Abstract Keywords 
We research the behavior of solutions of Levinson — Smith 
equation. In the case of an unperturbed system, friction is 
supposed to be positive. We consider the behavior of 
trajectories with respect to one localizing set that is, subset 
containing all compact invariant sets. More exactly, we 
show that this set is positively invariant and obtain some 
sufficient conditions for any trajectory to enter it. In the 
case of a perturbed system, we suggest that friction is lower 
bounded by some positive number and perturbation is a 
bounded continuous function. Similarly, we consider one 
localizing set in terms of non-autonomous systems and 
prove that it is positively invariant 
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Introduction. In this work, we consider Levinson — Smith equations of order two [1, 2]   
    ( , ) ( ) = ( )x f x x x g x e t  (1) 
researched in different assumptions on the functions ( , ),f x x  ( ),g x  and ( )e t  in a 
number of papers. First of all, in the monograph [3] devoted to qualitative geometric 
analysis of differential equations, especial attention is payed on equations of order 
two. Among the rest, the equation (1) and its particular case without perturbation 

( )e t  are studied in detail. Another particular case is researched with many aspects — 
the Li'enard equation   
   ( ) ( ) = 0.x f x x g x  (2) 

In [4], the qualitative behavior of trajectories of this equation is studied from the 
viewpoint of boundedness, oscillation, and periodicity. In [5, 6], upper bounds for the 
amplitude of limit cycles of the equation (2) are obtained. In [7], the period function 
of the equation (2) is researched in the suggestion that the origin O  is its equilibrium 
point of the "center" type. In this assumption, this function is defined in \ { },D O  
where D  is the largest domain containing O  and consisting completely of cycles 
surrounding O. Besides, the paper [8] is concerned with a generalization of the 
Li'enard equation the perturbed equation   

   ( ) ( ) = ( ).x f x x g x e t  
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We will further suppose that f  and g  in (1) are continuous and Lipschitz 
functions, the function e is continuous and bounded, and, unlike the most of famous 
works, we will also suggest that the function   

 
def

0
( ) = ( )

x
G x g x dx  

is upper bounded. Thus,  
def

* = sup{ ( )} < .xG G x   
In these and some other assumptions, the paper makes qualitative research of 

behavior of solutions of the system (1) based on the method of localizing compact 
invariant sets of dynamical systems [9–13]. 

The general form of the localization problem. Let us briefly describe this 
localizing method applied in analysis of different nonlinear systems [14–16]. 

Consider a dynamical system   
  = ( ),z q z  (3) 

where  ,nz    т
1( ) = ( ( ), , ( )) ,nq z q z q z  and ( )q z  is a Lipschitz function. 

A subset nM    is called an invariant set of the system (3) if, for each point 
0 ,z M  the trajectory 0( , )z t z  of the system (3) passing through the point 0z  is 

contained in .M  The localization problem consists in finding sets (localizing sets) in 
n  containing all compact invariant sets of the system (3) [9–11]. 

Let   be an arbitrary function in 1( )nC   and   

 
def

=1

( )( ) = ( )
n

i
i i

zz q z
z





  

the derivative of   with respect to the system (3). The subset   

 
def
= { : ( ) = 0}nS z z    

is called the universal section. Set 
def def

sup inf= { ( )}, = { ( )}.sup inf
z Sz S

z z
 

     Then all 

compact invariant sets of the system (3) are contained in the subset [9–11]   

  
def

inf sup( ) = : ( ) .nz z         

In other words, this subset is localizing for the system (3). The above-mentioned 
function   is called localizing. 

This method of localizing compact invariant sets is also applicable in a more 
general case of non-autonomous systems   

 = ( , ),z q z t  (4) 

where ,nz  ,t    т
1( , )=( ( , ), , ( , )) ,nq z t q z t q z t  and ( , )q z t  is a continuous and  

z-Lipschitz function. 
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A subset nM    is called an invariant set of the system (4) if, for each point 
0 ,z M  there exists a number 0t   such that the trajectory of the system (4) passing 

through the point 0z  at the time 0t  is contained in .M  In the non-autonomous case, 
the localization problem also consists in finding localizing sets  (subsets in n  
containing all compact invariant sets of the system (4) [12, 13]). 

In the non-autonomous case, we also take a localizing function 1( ).nC   Its 
derivative with respect to the system (4) is   

 
=1

( )( , ) = ( , ) .
n

i
i i

d zz t q z t
dt z
 


  

The universal section is the subset   

  def
= : ( , ) = 0 .n ds z t z t

dt


     

Like in the autonomous case, the subset   

  
def

inf sup( ) = : ( ) ,nz z         

where  
def def

sup inf= { ( )}, = { ( )},sup inf
z sz s

z z
 

     is localizing for the system (4) [12, 13]. 

The case of positive friction. Let us pass to constructing a localizing set of the 
unperturbed Levinson — Smith system   

 
= ;

= ( , ) ( )
x y

y f x y y g x 


  (5) 

supposing >0f  in 2.  
Take a localizing function   

 
2def

= ( , ) = ( ).
2
yh h x y G x  

Its derivative with respect to the system (5) is   

 2( , ) = ( ) = ( ( , ) ( )) ( ) = ( , ) .h x y yy G x x y f x y y g x g x y f x y y        

The function 2( , ) = ( , )h x y f x y y  is non-positive, and the set of its zeros (i. e. the 
universal section hS ) is .Ox  Hence,   

 
 

  

  

 
 
 

def
inf

( , )

def
*

sup
( , )

( , )} = { ( , 0) = { ( )};inf inf inf=

( , )} = { ( , 0) = { ( )} = .sup sup sup=

x y S x xh

x y S x xh

h x y h x G xh

h x y h x G x Gh
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The inequality   

   
2

inf{ ( )} ( )
2x
yG x G x  

is always true, and, thus, the localizing set is   

  
    

 

2def
2 *= ( , ) : ( ) .

2
yx y G x G  

We have  *( ) ;G x G  so,     2= ( , ) : ( ) ,x y y x   
def

*( ) = 2( ( )).x G G x  The 
graphs   of the functions = ( )y x  are located in the upper and the lower 
semiplains respectively symmetrically to each other across the axis ,Ox  and the 
bound of the localizing set equals    = .  Also,   

       
def

2= = ( , 0) : ,x x K  

where the set  
def

*= : ( ) =K x G x G  consists of all global maximum points of the 
function ( ).G x  

The set 
def

2= \U   is defined by the inequality | |> ( )y x  and has two connected 
components U  and U  given by the inequalities > ( )y x  and < ( )y x  
respectively. The set  2U   is defined by the inequality  ( ),y x  and, thus, 
 { } = .U Ox  

The set   *\ = : ( ) < ,K x G x G   being open, is the union of some countable 
family   of pairwise disjoint intervals. The connected components of the set  \  
are exactly all the subsets of the form   

         
def

2= {( , ) : } = ( , ) : , ( ) , .I x y x I x y x I y x I   

Statement 1. The function h  is decreasing on each trajectory of the system (5).  
◄The proof follows from non-positivity of the function .h ►  
Corollary 1. The set   is positively invariant. In other words, any trajectory, once 

entering ,  never leaves it.  
◄The set   is given by the inequality  *.h G  It remains to apply Statement 1. ► 
 Corollary 2. The bound   of the set   is semipermeable: trajectories can 

intersect it only entering the localizing set .   

The set of all equilibrium points is the set    
def

2
0 0= ( , 0) : ,x x K    

  
def

0 = { : ( ) = 0} .K x g x   

If  ,x K  then x is a global maximum point of the function ,G  implying 
( ) = ( ) = 0g x G x  and  0.x K  Thus,  0.K K  It follows that  0.  According to 
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Corollary 1, the set \   is positively invariant, and, therefore, so are all of its 
connected components ,I  .I   

From above, we conclude the following. 
Statement 2. All the sets ,I  ,I   are positively invariant.  
For an arbitrary > 0C , denote by ( )U C  the subset defined by the inequalities 

> 0x  and ( )< < ( )x y x C    and by ( )U C  the subset defined by the inequalities < 0x  
and ( ) < < ( ).x C y x    

The following theorem is the main result of the paper. 
Theorem 1. Suppose that the system (5) satisfies   

 > 0 inf{ ( ) : ( )}> 0, inf{ ( ) : ( )}> 0.C f p p U C f p p U C     (6) 

If : ( ( ), ( )),t x t y t   0,t   is an arbitrary trajectory, then   enters the localizing set 
  at some time 0 0t   and then never leaves it, or   is completely located outside the 
localizing set ,  *( ( )) ,th t G


   dist( ( ), ) 0tt


     (dist( , )P M  is the 

distance from the point P  to the set M) and one of the following three conditions holds     
    1) ( ) ;tt p


     

    2) ( ) tx t


  and the integral *

0
( )G G x dx


  is convergent; 

    3) ( ) tx t


  and the integral 
0

* ( )G G x dx


  is convergent.   

◄If the trajectory enters the localizing set   at some time 0 0,t  then it never 
leaves it since the set   is positively invariant. 

Suppose that   is completely located outside the localizing set .  This means 
that   is contained in the set U  and, therefore, in one of its connected components 

U  and  .U  Then, there are two possible cases     
    1)  U  and, thus,   = > ( ) 0,x y x  on ,  i. e. ( )x t  is strictly increasing and, 

hence, 


   *( ) ( ; ];tx t x   
    2)  U  and, thus,   = < ( ) 0x y x  on ,  i. e. ( )x t  is strictly decreasing 

and, hence, 


   *( ) [ ; ).tx t x    
In both cases, the function ( )x t  is strictly monotonous, 


   *( ) [ ; ],tx t x  and the function ( )y t  is nonzero and of constant sign 

on .  
The set   is defined by each of two equivalent inequalities  ( )y x  and  *.h G  

Hence, > ( )y x  and *>h G  on .  By Statement 1, the function h  is decreasing  
on .  Thus, 


   * *( ( )) [ ; )th t h G  and  *h h  on .  

Lemma 1.  If   is completely located outside the localizing set   and *x  is a finite 
number, then the trajectory   tends to some point p  and, also, 


  dist( ( ), ) 0,tt  


  * *( ( )) = .th t h G   
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◄ We have 


   
def

2 * *( ( )) = 2( ( ( )) ( ( ))) = 2( ( )).ty t h t G x t d h G x  Since the 
function ( )y t  is of constant sign, 


   *( ) ( ; ).ty t y  Consequently, the 

trajectory   tends to the point 
def

* * 2= ( , ) .p x y   Note that  0 { }.p Ox  Besides, 
 U  implying  ,p U    { } = .p U Ox  Thus, 


   ( ) = { }tt p Ox  

and, therefore, *( ) = .h p G  Also, 


* *= ( ( )) = ( ) = .lim
t

h h t h p G ►  

We see that, if   is completely located outside the localizing set   and *x  is a 
finite number, then the first case of Theorem 1 takes place. 

Now suppose that *| |= .x  

Statement 3.  If  2( , )x y   and  
def

*= ( , ) 0,C h x y G  then  2 ( ).y C x   

 ◄ We have      
22 2= 2( ( , ) ( )) = 2 ( ( )) 2 ( ) ,y h x y G x C x C x   2y C  

( ).x  ►  
Proposition 1. If   is completely located outside the localizing set ,  then 

   *( ) <| | 2( ) ( )x y h G x  on .   
◄ On ,  we have > ( )y x  and, also, *> ,h G   * > 0,h G  and, by Statement 3, 

  *2( ) ( ).y h G x ►  

 Corollary 3. If   is completely located outside the localizing set ,  then there 
exists a number > 0C  such that  | |< ( )y x C  on   once  0.t   

 ◄The proof follows from Proposition 1 and decreasing of the function  
h  on .►  

 Lemma 2.  If   is completely located outside the localizing set   and * =x  

*( = ),x  then there exist numbers 0 0t  and > 0C  such that, for each  0 ,t t  we 
have  ( ) ( )t U C    ( ( ) ( )).t U C  

◄ By Corollary 3, there exists a number > 0C  such that    ( ) < < ( )x C y x C  
on   once  0.t  

Suppose that * = .x  Then  U  and, thus, > ( )y x  on .  Besides, there 
exists a number 0 0t  such that > 0x  on   once  0.t t  If ( , ) = ( ),x y t   0 ,t t then 

> 0x  and   ( )< < ( )x y x C  implying ( , ) ( ).x y U C  
Now assume that * = .x  Then  U  and, thus, < ( )y x  on .  Besides, 

there exists a number 0 0t  such that < 0x  on   once  0.t t  If ( , ) = ( ),x y t   0,t t  
then < 0x  and   ( ) < < ( )x C y x  implying ( , ) ( ).x y U C  ► 

Lemma 3. If the condition (6) holds, the trajectory   is completely located outside 

the localizing set ,  and * = ,x   then * *= ,h G  and the integral 
*

*

0
( )

x
G G x dx  is 

convergent.  
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◄Without loss of generality, we can assume that * = .x   
It follows from Lemma 2 and the condition (6) that, for ,  there exist numbers 0 0t   

and > 0  such that f    on   once 0 .t t  Since 2

0

=
t

fy dt



0

( ) =
t

h dt


   

0 *
0| = ( ) ,th h t h   the integral 2

0t
fy dt



  is convergent. On the other hand, ,f    

2 2 0fy y   once 0t t  and, thus, the integral 2

0t
y dt


  is convergent. Hence, the 

integrals 2

0t
y dt



  and 
2

0 0

( ( )) =
2t t

yh G x dt dt
 

   are also convergent. 

On ,  we have * * ( )h h G G x    implying * *( ) 0.h G x h G     Since the 

integral 
0

( ( ))
t

h G x dt


  is convergent, * *= .h G   Therefore, by Proposition 1, 

dist( ( ), ) 0.tt


    
As said above, on ,  we have * ( ),h G G x   *( ) ( ) 0,h G x G G x     

*( ) ( ) 0,h G x G G x     
2

*= ( ) ( ) 0,
2

y h G x y G G x y     and, since the 

integral 2

0t
y dt



  is convergent, so is the integral *

0

( ) .
t

G G x y dt


  Also, recall that 

the function ( ) = ( )y t x t  is of constant sign and the function ( )x t  is strictly 

monotonous. It follows from above that the integral *

0

( ) =
t

G G x ydt


  

*
*

( )0

( )
x

x t
G G x dx    is convergent and, thus, so is the integral 

*
*

0
( ) .

x
G G x dx   

This completely proves Theorem 1. ► 
Corollaries and examples. Corollary 4. Suppose that the condition (6) holds and 

the integrals *

0
( )G G x dx


  and 

0
* ( )G G x dx


  are divergent. Then any trajectory 

either enters the set   and then never leaves it or tends to some equilibrium point 
.p   

 Corollary 5. Suppose that the condition (6) holds, the function g  has period > 0,T  

0,g   and 
0

( ) = 0.
T

g t dt  Then any trajectory either enters the set   and then never 

leaves it or tends to some equilibrium point .p   
 ◄The function ( )G x  is upper bounded since, for all ,x    
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0

( ) = ( ) max ( ) .
x

G x g t dt T g x  

Thus, * = sup{ ( )} < .xG G x    The function G  is periodic and *.G G  

Consequently, the integrals *

0
( )G G x dx


  and 

0
* ( )G G x dx


  are divergent. It 

remains to apply Corollary 4. ► 
Now we give one more corollary of Proposition 1. 
Corollary 6. If   is completely located outside the localizing set   and * *= ,h G  

then ( ) 0,ty x


   i. e. dist( ( ), ) 0.tt


     

Example 1. Consider the equation 2
1 sin = 0.x x x
x x

 
  

 


 In the notations 

above, we have 2
1( , ) = ,f x y
x y 

  ( )=sin .g x x   Hence,  ( ) = 1 cos ,G x x  

* = 2 < .G  The localizing set 2    is defined by the inequality 2 /2 cos 1.y x 
Besides,    2 2= ( ) = ( , 0) : cos = 1 = ((2 1) , 0) : .Ox x x n n           

For each ,x   we have ( ) 0,G x   * ( ) 2,G G x   *( ) = 2( ( )) 2.x G G x    Take 
an arbitrary number > 0.C  If ( , ) ( ),x y U C  then | |< ( ) 2 ,y x C C    x   

def
2 2< = 3 /2 (2 ) ,y M C      ( , )>1/ .f x y М  Thus, inf{ ( ): ( )} 1/ >0.f p p U C М 

Since the number > 0C  is chosen arbitrarily, the condition (6) holds and, by 
Corollary 5, any trajectory either tends to some equilibrium point ((2 1) ,0) ,nP n    

,n  of the "saddle" type or enters the localizing set   and then never leaves it. 
The equilibrium points nP  divide the set   into the bounded positively invariant 

sets   

  
def
= ( , ) : 2 < , .n x y x n n       

Each of the sets n  contains one stable equilibrium point (2 , 0).n  By LaSalle 
theorem, this equilibrium point attracts all trajectories in .n  

It follows from above that any trajectory either tends to one of the equilibrium 
points ((2 1) , 0)n    or enters a set n  and then, not leaving it, tends to the stable 
equilibrium point (2 , 0).n   

 Remark. If the condition (6) holds, the function g has period ,T  and 
0

( ) = 0,
T

g t dt  

then the system (5) does not have periodic trajectories and each of its trajectories 
tends to one of its equilibrium points. 

 Example 2. Consider the equation   

 2 2 = 0
(1 )

xx x
x

 


   

and prove its global asymptotic stability. 
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The origin is an asymptotically stable equilibrium point if this system. Show that it 
attracts all trajectories of the system. 

In the notations above, ( , ) =1,f x y  2 2( ) = .
(1 )

xg x
x

 Thus, 
2

2( ) = ,
2(1 )

xG x
x

 

* =1/ 2 < .G   Take a localizing function 
2def

= ( ).
2
yh G x  The localizing set 2    

is defined by the inequality ( , ) 1/2,h x y   i. e.   

 
2

2
2 1.

1
xy

x
 


 

The condition (6) holds and, by Corollary 4, any trajectory enters localizing set   
and then never leaves it. 

Inside ,  we have ( , ) <1/ 2.h x y  All sets  2( , ) : ( , ) ,x y h x y c   < 1/ 2c  are 

bounded. They are also positively invariant since 2( , ) = 0.h x y y   
By LaSalle theorem, the equilibrium point (0,0)  attracts all trajectories in .   
A perturbed system. Consider the perturbed Levinson — Smith equation   

 
= ;

= ( , ) ( ) ( ).
x y

y f x y y g x e t  




 (7) 

We suppose that f  and g  are Lipschitz functions. We also assume that f  is a 
function lower bounded by a number > 0  and e  is a bounded continuous function. 

Set 
def

0
( ) = ( ) .

x
G x g t dt  We have = .G g  Suppose that 

def
* = sup{ ( )} < .xG G x    Since 

the function e  is bounded, its set of values E   is contained in the segment [ ; ]c c  
for some > 0.c  

Take a localizing function 
2def

= ( ).
2
yh G x  Its derivative with respect to the system 

(7) is   

 = ( ) = ( ) ( ( , ) ( ) ( )) = ( ( ) ( , ) ).h G x x yy g x y y f x y y g x e t y e t f x y y          

The universal section hs  is contained in the union of the axis Ox  and the set  

 
   

 
2 2

2

( , ) : ( , ) ( , ) : ( , )
( , ) : .

x y f x y y E x y f x y y c
x y y c

      

   

 


 

Therefore, for each ( , ) ,hx y s  we have / ,y c 
2

*
2( , ) .

2
ch x y G 


 Hence,   

 
2def

*
sup ( , ) 2= sup{ ( , )} ,

2x y sh
ch h x y G  


 

and, thus, the corresponding localizing set is contained in the subset 2̂   defined 

by the inequality 
2 2

*
2( ) .

2 2
y cG x G  


 Consequently, ̂  is a localizing set. 
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We will further denote by *
cG  the number 

2
*

2 .
2
c G


 

The set ̂ is given by the inequality *( , ) .ch x y G  
Lemma 4. The derivative of the function h  with respect to the system (7) is non-

positive on the set defined by the inequality *( , ) ch x y G  and upper bounded by a 
negative number on the set given by the inequality 0( , )h x y h  for each *

0 > .ch G   

 ◄Take an arbitrary number *
0 > .ch G  Set 

def
*

0= > 0.ch G   
If 2( , )x y  , t  , and 0( , ) ,h x y h  then   

 
2 2 2

* * *
0 2( ) = = ,

2 2 2c
y y cG G x h G G        


 

i. e. 2 22 ,y c       

  
2 2

2 2 2 2

( , , ) = ( ( ) ( , ) ) = ( ) ( , ) ( ) =

= ( ) = ( ) 2

h x y t y e t f x y y ye t f x y y ye t y

y e t y c y y y y c y c c

   

             


 

and, therefore,    2 2 2 2 2 21 1( , , ) | |)( 2 2 2 .h x y t y c c c c c              
 

  

Since > 0,  then the number  2 2 2 21 2 2c c c      


 is positive. ► 

 Corollary 7. The set ̂ is positively invariant.  

 ◄The bound ˆ  of the set ̂ is defined by the equation *( , )= .ch x y G  By 
Lemma 4, 0h  on ˆ .  Hence, the bound ˆ  is semipermeable and trajectories can 
intersect it only in the direction of the set ̂.   

Thus, any trajectory, once entering ˆ ,  never leaves it. Also, on any trajectory never 

entering ̂, *> ch G  and, by Lemma 4, the function h  is decreasing and tends to *.cG ► 
Conclusion. In the paper, Levinson — Smith dynamical system was researched 

with the object to localizing compact invariant sets and the behavior of solutions with 
respect to one localizing set. In the case of an unperturbed system, with the 
assumption of positive friction, it was proved that this set is positively invariant, and 
some sufficient conditions for any trajectory to enter it were obtained. In the case of a 
perturbed system, with the suggestion that friction is lower bounded by some positive 
number and perturbation is a bounded continuous function, it was proved that this 
localizing set is positively invariant. 
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