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OPTIMAL REPRESENTATION OF MULTIVARIATE
FUNCTIONS OR DATA IN VISUALIZABLE
LOW-DIMENSIONAL SPACES!

It is intended to find the best representation of high-dimensional
functions or multivariate data in the Ly(Q) space with the fewest
number of terms, each of them is a combination of one-variable function.
A system of non-linear integral equations has been derived as an
eigenvalue problem of gradient operator in the above-said space. It is
proved that the complete set of eigenfunctions generated by the gradient
operator constitutes an orthonormal system, and any function of La(Q)
can be expanded with the fewest terms and exponential rapidity of
convergence. It is also proved as a Corollary, all eigenvalues of the
integral operators has multiplicity equal to 1 if the dimension of the
underlying space R™ isn = 2, 4 and 6.

The analysis and processing of massive amount of multivariate data
or high-dimensional functions have become a basic need in many areas
of scientific exploration and engineering. To reduce the dimensionality for
compact representation and visualization of high-dimensional information
appear imperative in exploratory research and engineering modeling. Since
D. Hilbert raised the 13‘* problem in 1900, the study on possibility to
express high-dimensional functions via composition of lower-dimensional
functions has gained considerable success [1, 2]. Nonetheless, no methods
of realization are ever indicated, and not even all integrable functions
can be treated this way, a fortiori functions in L9(Q2). The common
practice is to expand high-dimensional functions into a convergent series
in terms of a chosen orthonormal basis with lower dimensional ones.
However, the length and rapidity of convergence of the expansion heavily
depend upon the choice of basis. In this paper an attempt is made to
seek an optimal basis for a given function provided with fewest terms and
rapidest convergence. All elements of the optimal basis turned out to be
products of single-variable functions taken from the unit balls of ingredient
spaces. The proposed theorems and schemes may find wide applications
in data processing, visualization, computing, engineering simulation and
decoupling of nonlinear control systems. The facts established in the
theorems may have their own theoretical interests.

The paper is published without any redaction.
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Due to the limitation of space we report here the primary Theorems
with abridged proofs. The detailed proofs will be contained in a separate

paper.
Let F(z) = F(z',2?, ...,x™) be an arbitrarily given function defined
on the unit cube Q in R™ , F' € Ly(Q),

/(F(xl,xQ, ...,x”))delde...dx” < M? < o0, (1)
Q

where x = (z',22,...,2") is a point in R™. It is intended to find a set of one-

variable functions ¢(z®) whose product ¢*(z1)@?(z?) ... " (x") € Ly(2)
would best, or optimally, approximate F'(z) with the least-square deviation:

L= / (F(z', 2%, ..., 2") — ' (a")?*(2?) ... @”(x”))Q dQ = min, (2)
Q

where dQ = dz'dz? ... dx".

Suppose each 1%(z) is taken from the unit balls B, € LY (0,1),
Bo = {ll¥°ll1,001) < 1}, @ = 1,2,...,n, the above requirement (2) can
be rewritten as

n

p=of [ @ - [[vrerae ®
Q =

Opening up the brackets on the right side we have

n

— [F@) - 228 @) [T + 2 T] @ ))a

a=1

It is easy to verify that (3) holds if and only if there exists a product of
n functionsH 0, ©* € B,, and areal A € R, XA # 0, which enable the

following functional to achieve supremum on all unit balls B,,

A= sup /F(x) H Y (x*)dQ) =

$p*€Ba

= /F(xl, 22 2t (e (2?) .. " (a™)datda? . da”. (4)
Q
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For the convenience of discussion in the sequel we distinguish
the same spaces Léa)(O,l), a = 1,2,...,n, and construct a product
space L2(0,1) = L{(0,1) x L{P(0,1) x ... x L{M(0,1), L2(0,1) =

_ {Zaﬂﬂ¢g, vs € I(0,1), a = 1,2,...,n, B = 1, 2,...,N}.
Jé; a=1

After introduction of inner product for ¢, ¢ € L%(0,1), H¢a
=11
a=1

<H¢ Hs0> H e =11 [ waet @

with induced natural norm
n

[T

a=1

L3(0,1) becomes a linear normed space. The L3 (0, 1) defined above can
be embedded into Lo (2) with preserved norm and becomes a dense subset

of the latter [3, 4], while LS (0,1) is a closed subspace of Ls((2), since
[ [ ©.1) 9|, () always holds on €2 the other hand, for the multi-
2 )

linear functional f : L5(0,1) — R, defined by
f(H w) - [ F@ v @ae, )
a=1 Q «
the following inequality holds for every element of L% (0, 1):

‘f(HW) < M Iy

where M is the lower bound defined in (1). Hence f is bounded and, by
Banach-Steinhaus theorem, is totally continuous in L”(O 1) [5].

Let B, be the unit ball of L{” (0 1), B, = {¢~ € L(0,1),
lv|| < 1}, and B™ = By X By X -+ B,,. Flrst of all we need the
following Lemma.

Lemma 1. The n-linear form (5) can achieve its supremum on B".
Whenever F'(z) # 0, the supremum \ is positive,

A= sup /F(x)H¢adQ > 0. (6)
Q (0%

= H HQpaHLéO‘)(OJV

L3(0,1) a=1

Pp*€EBa
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Proof. Since all unit balls B,, a = 1, 2,...,n, are weak compact,
by the Banach-Alaoglu theorem, every sequence {¢¢} enabling (4) to
approach supremum contains a subsequence weakly converging to some

element ¢“ in B, [5, 6]. Now we show that there exists a sequence H (e

a=1

k = 1,2,..., that converges weakly to an element H e € Ly(0, 1) at

a=1
which the following functional achieves its supremum,

. 1 n [ o
lim [ F(e ) [ ¢ran =

—/F(xl, H(padQ A= sup /F(x)H¢a(x

$p*€Ba

or

Q

: | R () a « _
lim [ F(a! ,x)[];[% ];[Mdﬂ 0.

Due to the identity

H% H@a:
—Hzpk— R A R SR
+ole? o p — [ e
we have a
/F[Hzp,‘j—H@a}dQ_
A o

1

‘Z/VF'( dxz}ﬂgp Hzpfdﬂ

= 1Q 0 =i+1

n

—Z/FkH<P H ¢ngu

i=1 Q; =i+1

where d€); = da' - -- dri - - - dx™; 7 means without ith coordinate, and

1
Flah, - oo a") = / P, e () — g (o) da.
0
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By the weak compactness of B, for any fixed point (z?, - - - | x%, e x™)
in Q;, Fy(zt, - 2, - ,2") = 0 as (Yi(z}) — oi(z )) tends weakly to
0. By the Dominated Convergence Theorem [7], ||F il Lo — 0, k=1, 2,

, n, hence

[Ftes o) e - ITe°|a0) < 3 IRl
a a 1=1

Q

as k — oo. This is to be shown for the first part of the Lemma.

To verify the second statement we take an orthonormal basis {eg(xa),

g=12,--- } in each Léa)(O, 1) and construct a set E, £ = {H el (x),

a=1
Vo = 1,2, }, each v, runs over N independently. Since L7 (0, 1) is dense

in Ly(Q2), E becomes an orthonormal basis of the latter [4, 8]. Any element
F € Ly(Q) can be expressed uniquely in the form of Fourier series,

F(.Tl,"' 7$n>:ZPﬂ ,ga, Pﬂ—<F7H€ga> )
B=1 a=1 ¢ LQ(Q)

By assumption F'# 0, there must be some P,#0. Let ¢,=(sign Py) H ek

Substitute the above series into (6), and take inner product with just deaﬁned
Yy, , we obtain immediately A > | P;| > 0, what is claimed in the Lemma.

Now we proceed to establish the necessary conditions which a solution
of (4), H 0%, should satisfy. Suppose the expression (4) achieves its

«

supremum at some element H ©* € B". According to Lagrange Principle,

«

H ©“ must satisfy the following conditions with a multiplier X" [5, 9]:

«

D(/F(xl,... ,x”)ggpadx—X(<1;I<pa,1;I<pa>L2(Q) — 1>> =0,

Q
(7)
where D denotes the Gateaux directional derivative with respect to all pa,
N is a real to be determined. According to the rules of differentiation,
n

Df = Z D;f, D;f is the partial derivative with respect to ¢'. Let A
i—1
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be arbitrary element in Lg)(O, 1), t €[0,1], A = 2X. A straightforward
computation yields

pif =t 2T +o0) -

ai

~i(I1#) | = (o (ITe) -2en) <o
ac ; LY (0,1)

ai

Due to the arbitrariness of h‘, we have

@(Hﬁ)—w—o, =12, ®)

ai

or, after unfolding,

— P, (L{iw) -

= [FE et el i) e
Q;
cdrtda, i=1,2,--m, (8)

where 7 means absence of ith coordinate, €; is the (n — 1) dimensional
unit cube without z°.

The operator & = (®y, Po,...,P,) generated by G-derivative and
defined in (8’) is called the gradient operator of functional (5). Now we
proceed to prove the following, the primary theorem as a start-point for
further investigation.

Theorem 2. For any given F(z) € Lo(R2), F(z) # 0, its gradient
operator ¢ or, equivalently, the system of homogeneous integral equations
(8”) possesses at least one positive eigenvalue. The greatest eigenvalue
and its associated eigenfunctions satisfy (4), and are a solution of this
supremum problem.

Proof (abridged). It is known that for any given F(z) € L(9),
all components of its gradient operator ®;, defined by (8), are compact
[6, 7] so the range ®;(B') is a compact subset in LQ)(O 1), here

Hzp ), v < 1}. By Lemma 1, there exists a sequence
ai
in B”, {Hzp,‘j}, weakly convergent to H(pa € B" as k — oo so that

«

the following holds,
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im (o (TTvg ). i) -
o ki L5(0,1)
_<®Z(H¢a>7¢l> :)‘7i:1727"'7n'
ki L2(0,1)

Now we construct new functions,

ikte) =i - (T 0z -
ai
= M} () _/F(xl,x{... L") (zh) -
Q
R (@M dat e dat o dat, YRl <1, i =1,2, n,

An accurate calculation of the norm of 7}, shows that Lemma 1 implies
also while H Yy approaches weakly to its limit H ©“, mi strongly tends

(03 (03
to zero. Namely,

2
Mi— @] [ed)| =0, i=12 .
ai

lim (7, 7) = lim

This indicates, the sequence {¢f, o = 1,2,--- ,n, k = 1,2,---} has a
strong limit, denoted again by {¢*, o = 1, 2,...,n}, which satisfies (8).
Taking inner product for (8”) with ¢, we obtain finally,

<q>i( 11 w>,¢'> _

a=1

aFi

- /F('rlwrQ? T ,$n>(pl($l>(p2($2> T (Pn('rn>d'rld'r2 coeda = A, )
Q

that is, H ©“ is a solution of (8), as claimed in the Theorem.

«
n

Let A\; and H(p‘f are the greatest eigenvalue and its associated

a=1
eigenfunctions, respectively. Construct new function

Fl('rlwrQ? e ,xn> - FO('rlwrQ? e ,xn> - )‘1 HQP?('TQ>‘
a=1
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Let F; # 0. It is easy to check that the norm of Fin Ly(2) can be calculated
as

IF 2 = (Fo - [Tt Fo - M [ t) =
= I17l* = 2x (o, [T ot) + X (Tt TT o) = 150l — 22

So long as F; # 0, the Lemma 1 and Theorem 2 are applicable for I} as
well. Having F| replaced by F} in (8), one gets a new operator ¢, and,
correspondingly, new system of equations (8’).

By Theorem 2, it possesses at least one positive eigenvalue Ao and

associated eigenfunctions H 5 of (8) with F replaced by Fj. Similarly,
we have o

F=F-X]]e=FR-M]]e-2]] e,
a=1 a=1 a=1
with its norm

1Eo]” = IFll = 3 = [|1Fo]l” — AT — 5.

The process can be continued inductively, if Fy # 0,

n N n
Fx=Fyva—Mv]]ex=Fo—) ]« (10)
a=1 B=1 =1
and
N
IFn I = 1Fxal* = A% = 1Foll> = DA% (11)
B=1
Further, each Fy generates its own gradient operator &y = (P, ..., Pyy),

D (H <P7v+1> - /FN(x) [T (@) = Ay (@),

Qi a#i

i

i=1,2-,n (12)

If the process continues infinitely, (10) becomes an infinite series. Now we
prove that the following equality holds as N — oo in the norm of Ly(€2),

FO('rlwrQ?"' 7xn> :Z)‘ﬂHQOE(xa) (13)
p=1  a=1
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Theorem 3. Any given F(x) € Lo(f2), F' # 0, can be expressed
in the form of series (13) with all positive eignevalues and associated
eignefunctions generated by the sequence of gradient operators {®3}. The
series (13) converges exponentially to F'(z) in the norm of Ly ().

Proof. If the process of construction described in (10) terminates at a
finite step NN, the validity of the first part of Theorem is apparent. Now
suppose that (10) becomes an infinite series (13) when N — oo. It is
obvious from (10), however large is N, one always has || Fi||> > 0, and

N
Y N < IR (14)
=1

The necessary condition of convergence for the series on the left side is
Any —0 as N — oo, and (6) implies that the following relationship holds
uniformly on B",

AN+41 = sup /FN(x)H¢a(xa)dQ = <FN($>7H<P7V+1> >

e eBa L2(9)

> <FN(x),H¢a> , VY € By,

La2(©)

here H ¢y is a solution of (6) and (8) with Fy(x) replaced by Fn(z).

Therefxore, when N — oo,

lim <FN(x),H¢a> —0, VY*€ By, a=1,2,--+ ,n.
a L

2(2)

It is evident that B™ is a fundamental set, i.e., it spans L3(0, 1), is a
dense subset of Ly(2). The above condition suffices for Fiy to converge
weakly-star to some element F,, which is equivalent to 0 in the weak

topology [4],

lim Sup/FN(x) H¢a(xa)dﬂ = SETP <Foo, H¢a> = 0.
Q (03 (03

N—o0 Bn
L2 ()

Recall the fact that the set £ = {H e Yo € N} consisting of

[0

combinations of orthonormal bases of Léa) (0, 1) is a complete orthonormal
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basis for Ly(£2). NoticeE C B™, by Lemma 1, it implies

0= SETP <Foo,1;[¢a> > S%p <FOO,H6';“> > 0.

«

Which means all Fourier coefficients of F, are zero, hence F,,= 0. Then
(13) holds in the sense

1ol =) A2 (15)
B=1

Now we proceed to justify the second statement claimed in the Theorem
about the convergence rapidity of the expansion (15). By assumption all
Fjs # 0, and due to (10) and (11), the following relations and the continuous
multiplication are well defined,

[Failk _ |Fol* = A3 .
| Folf? | Folf? | Fol|*
IFNI® I1Fval® = X% N
NEval? IEval® [P

N
1Ew® B (Fval® B A “TI (1 A5 >

2 2 2 2 2 B 2
[Eoll®  [[En—all® I Fv—2l” BT IR 55 [ E-l]
)\2
Denote oy = ﬁ, namely A\g = ag || Fj_1]|. By the proved previously,
B-1

0 < ag < 1, and notice that the inequality (1 — «) < e~ always holds,
then we have

M=z

2
R

N —
IFwl® = Bl ] (1= ) < |[FollPe = 7,
B=1

or

a2

7 (16)

M=

1
2

IEN] < [[Folle 7

Let Ry, = HFNH2 = Z )\% be the sum of residual part of (15). It is

B=N+1
easy to show the sum
N N )\2
2 k
D=2 &
k=1 k=1 "%
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diverges to infinity as N — oo [10], and the right side of (16) tends to
zero exponentially as claimed in the Theorem. The unconditionality of
convergence of (13) will be provided by Proposition 4.

In the above discussion we did not touch upon the properties of the
set of eigenfunctions. We will see below, it is quite similar to the case of
symmetrical integral operators, the set of all eigenfuctions generated by
(12) constitutes an orthonormal system in Lo (£2).

Proposition 4. For arbitrarily given F(x) € Lo(Q2), F # 0, the set

of all eigenfunctions {H ¢5, B=1,2,... ¢ of the sequence of gradient

operators &3 = (Pgy,. .., Ps,), defined by (12), constitutes an orthonormal
system as an ingredient part of some complete orthonormal basis of Ly (€2).

Proof. By definition of Fly, the identities Fﬂ,H<pg = 0 hold

for all 8 = 1,2,...,N. Bach ¢%,; can be decomposed uniquely
as Yyi1 = Aoy + baPyi1> PNLON L1, and aq, ba be constants of
normalization. A substitution for ¢%; yields

H PN41 =
_Col—I(PN‘i‘ClZ(PN_H H(PN+ +CnH§57\]+l :COH¢7V+PN+1-
ai o' «a

Clearly, PNHLH@?\,. Thus, due to the identities said above,

ANyl = <FN,H<P7V+1> = <FN,H<PN> (FNn, Pny1) =
= (Fn_1, Pyy1). 1t follows H‘PNLH‘PNH' Similar analysis of ¢§
for6=N-1,...,1in succes;ion, one ((X)btains

AN41 = sup /QFN($>H¢adQ—

Pp*€EBa

= sup /QFO(x)H¢adQ_/QFo(x)HﬁVHdQ. (17)

p*€Ba
wae(LS\‘;‘))J_

This being true for all N € N follows the set of eigenfunctions
{H ©5, 8=12,.. } constitutes a orthonormal system in Ly(€2). Since
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for any orthonormal set S in a Hilbert space there is a complete orthonormal
basis that contains S as its subset [11]. The Proposition is thus justified.

Remark. It appears the remarkable maximum property of gradient
operators expressed in (17), which is entirely analogous with compact self-
adjoint operators in Hilbert spaces. The Proposition also shows there are as
many different orthonormal bases as the cardinality of different elements
in LQ(Q)

Corollary 5. If the dimension of underlying space R" with n = 2, 4
and 6, all eigenvalues of gradient operators defined by (11) for arbitrarily
given F(z) € Lo(R2), F(x) # 0, have multiplicity no more than 1.

Proof (abridged). Suppose the contrary, if there exist two different

eigenfunctions ¢, = H Y411 and oo = H ¢ 41, corresponding to the

same eigenvalue )\N+1> which enable the followmg functional to achieve
its supremum on B",

ANt1 = sup fy H¢

Pp*€EBa

— sup /QFN@)HMQ—fﬂHgo%H,k),k—l,z. (18)

$p*€Ba
Now construct a new element @3 = H (tef 4+ (1 —t)e3), t € [0, 1], and

put it into (18). After exposing the product, we have

In(ps,t) = f (H (te§ + (1 — t)<pg)> —

«

=t"fn (H <P‘f> + (1= t) f (Z oh [ o)+
a i=1 ;
+" (L=t fy (Z i ]| <P‘f> +

i#j

P )2y (Z i H)

i#£j
(1—t“fN(Zgo1Hsa2> (-1 fN(H%) (19)

By Proposition 4, ¢} and ¢ are mutually orthogonal. Dropping index
N for brevity, we have the necessary condition,

Df = f(ZhZH%)_Z (g, WY A =0, Vhie LY (0,1).
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Take h' = b in the above we see that the second term and the second
from the end are zero. For computing the rest terms in the exposition (19)
we invoke the sufficient conditions for f to achieve its maximum at . If
the dimension of the underlying space, R", n is even, then the following
equations must be satisfied [9, 11],

Dkf(Hgoa):O, k=1,2,--- ,n—1. (20)

A direct calculation shows

DQf(H%) —2f(2h1h;Hgol> X (A =0

i#£j i

for arbitrary hi and hj taken from L$”(0, 1). Let hi = hi = ©b. We get
the value of the third term,

fn (Z ‘PQ‘PQH‘Pl) )‘N+1

i#]

The third term from the end of (19) is in complete symmetry with the
above, and, due to (20), all the rest terms are zero except the first and last
ones. Then,

Falps, t) = (t” b (1 - t)Qg 21— t)Hg T (1 t)”) ANii.

It follows from the assumption, fy(¢3, 0) = fn(ps, 1) = Ayy1, and it
reaches minimum at ¢ = 1/2. Let ¢ = 1/2. It yields

In (<p3, %) = fn (];[ @) = (24 n)2 " Ay i1

. o7 + 95
Since || + 02| = /2, T T2
[of + @3] 7

fN ((P?n L) - fN (H %) = (2 + n) . 2_%)\N+1 = p(n))\NH.

€ B,, we have

V2

o7 + 5
V2p

A direct computation shows this is possible only for n = 2, 4 and 6. In

It is evident, if p(n) > 1 then (p(n))* > 1, so that € B".

these cases if ¢ H ONn41.1> and o3 H ¢ 11,2 both render the supremum
« «
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An+1 to the functional fy, then along the direction of the middle point
@3 of segment joining ¢ and ¢%, also provides the supremum Ay, to
fn. By the assumption 1 # 9, there must be infinite amount of different
elements in B™ at each of them f attains its supremum. This contradicts
the compactness of gradient operators. That is, for n = 2, 4, and 6, the
multiplicity of any eigenvalue of (12) is no more than 1. This completes
the proof of the corollary.

The case n = 2 may cause particular theoretical interest [12,13]. Let
F(x,y) be defined on the unit rectangle B? of the plane and be square-
integrable. By Theorem 2, it generates a gradient operator ®, and (8) is
reduced to

1

1
@¢—/mewm@—wz v@—/meme—Mw@n
0

0

Apparently, ¢ and v are eigenfunctions of self-adjoint operators
PP p = N2, DY = A%,

Corollary 5 claims for this case that all eigenvalues of ® have multiplicity
no more than 1. Indeed, suppose the contrary. Let ¢;(x)¢1(y) and
©2(z)12(y) provide the same supremum \; on B2,

M= sup /QF@,yw(xw(y)dxdy—

ppeB?
- [ Feweidedy, k=12 @2)
Q

By Proposition 4, ¢ 1 ¢ and 17 11, Let

@33 = (tor + (1 =)o) (tpr + (1 —t)y), 0<tE< L

It is easy to check,

/F(x, V)os(2)s(y)dady — (1— 2+ 2D, [ostssl| = 1 — 2t + 262,
Q

thus

/F(x,y)wdxdy =i, Vte0,1].
| p3ts]|

This means the functional reaches \; on B? along all rays from the
origin and intersecting any point of segments joining 1, @9 and ¥y, ¥s.
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It contradicts the assumption and implies A; is not supremum of the

functional. One may notice, this is true if F'(z,y) replaced by Fy(x,y) =
N

= F(z,y) — Y _ Aspgts in (21). In particular, if F(z,y) = F(y,z), it
B=1
generates a self-adjoint operator, ® = ®*, the above conclusion is also true

for this special case of the fact described above.

From the geometrical point of view, it is known that the unit ball B
of Ly(Q) is strictly and uniformly convex [14,15]. It is believed that the
BN B™ possesses the same property. The equations (18) create a supporting
tangent hyperplane to B™ in Ly(£2). A conjecture arises that the claim made
in Corollary 5 would be true for any finite dimensional underlying spaces
R™. But we have had direct proof only for n even and n < 6. So the general
question remains still open.

One may wonder what is the condition to be imposed on F'(x) for
guaranteeing the convergence of the series (13) in space L;(2) and in the
Banach space of continuous functions C'(€2). The question arisen is that the
assumption (1) is not enough to ensure the convergence of the infinite sum
Z Ag except F'(x) generates a nuclear gradient operators [16]. However,

B
for our cases, according to the theories developed in [17, 18, 19], we can

establish the following Theorem. We list it with the proof omitted.

Theorem 6. For any given function F(z) € Lo(2), the series (13)
converges uniformly in L, (). If F'(z) is continuous on {2 and possesses
all continuous first partial derivatives in {2, then the series of expansion
(13) converges uniformly to the continuous function F'(z).

It is worth to re-emphasize, Theorem 3 and Proposition 4 have shown
that for any high-dimensional square-integrable function F'(x) there exists
an optimal orthonormal system of its own, consisting of eigenfunctions
of its gradient operator, in terms of which F'(x) can be expanded with
shortest length and rapidest convergence. Since each element of the system
is a product of n single-variable functions, this may be a reliable way
for reduction of dimensionality and compact expression of information
contained in F'(z) in one-dimensional spaces. The inequality (16) provides
a posteriori error estimate, in the process of computing the remaining error
can be precisely estimated after completion of each step of calculation, this
is thus a difference from a priori error estimate.

We recall that Lo (£2) and l5, the space of square-summable sequences of
reals, are isometrically isomorphic. Each element of Ly (2) has its spectral
image in [l according to bases chosen in each spaces. If one identifies
the square of norm of F(z) € Lo(2) with the energy or information it
carries, in terminology of physics, the outcome of Theorems presented in
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this paper is to assert that for any given F' there exists an optimal basis
in Lo(Q2) which furnishes the element with an image sharply concentrated
on a few of spectrum-lines in lo, if the latter is equipped with canonical
basis. This may be in marked contrast with a flat spread of spectral lines
with respect to a casually chosen basis for spectral analysis as it happens
in many cases of practices.

The results presented in this paper may find wide applications in
computational mathematics and engineering sciences, particularly in the
field of control theory and automation [20]. Take a typical example, if a
hypersurface or mainfold in R”, z" = F(z!, 22, ... 2"!), is needed to
be stored, the amount of data is measured as N~ + N, N is the mean
number of discrete samplings for each variable. If [ terms are taken in
(13) to represent F', the amount of data to be stored or processed will be
reduced to nlN, a 1/N™2 times less than previously needed. Engineering
practice had shown, sometimes to take two to three terms of (13) would
be precise enough to represent a given higher dimensional function by the
sum of products of one-variable functions [20].

The problems we investigated in this paper are related to a topic posed
and studied by Liapunov A.M. at the beginning of 20" century, he called it
power series integral equations and imposed severe restriction on the given
function. He required F'(z!, 22, ..., 2™) to be totally symmetric, that means
the exchange of any two among n variables retains F' unchanged [21,22].
The general properties of n-multilinear forms have been elucidated in [5,
6, 7]. Krasnoselsky M.A. proved that if F' is strictly positive and totally
symmetric, F' € Ly(Q2), 0 < m < F < M < oo, the following integral
equation

o (lel @(ti)> =

= /F(S,tl,tm X 'tn>¢(t1)<ﬁ(t2) e (ty)dtydts - - - dt, = Ap(s)
)

possesses at least one positive eigenvalue [22]. Wainberg M.M. had
shown that for a totally symmetric F' € Ly(Q2) all components of the
gradient operator ¢ generated by F' are compact, and the functional

<¢)(H @(ti)>, ©(s) ) is weak continuous respect to ¢, it achieves its
i=1

supremum value on the unit ball [21]. It is obvious, the results we obtained
in this paper cover most cases studied by these earlier investigators.

The author expresses his gratitude to professors Lin Qun, Guo Lei,
Qin Hua-Shu, Guo Bao-Zhu and Cheng Dai-Zhan of the Institute of
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interest and the time they spent for discussion and checking the proofs of
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3ssap CyH pommiics B 19311, okomumn MBTY mm. H.D. baymana. [I-p TexH. Hayk
(MI'TY um. H.D. baymana, B 1990t.), [Touernsrit npencenarens [Ipesnamyma Kuraiickoit
TEeXHIMYECKOHN aKaJeMHH, TPEe3UICHT AccoIManuu ApyxOsl Mexny Kutaem m SnmoHumeid.
HeiictBurensubiil wieH Kuralickol akagemMun Hayk, Kutalickoll MH)KEHEpHOU aKaJeMMU.
[MouerHsIit Ipodeccop akageMuy MaTeMaTHKH W CHCTEMHBIX Hayk. VIHOCTpaHHBIN dieH-
koppecnonaeHT HanmonansHoi mmxenepHot akagemrn CIIA. MaocTpanssiii wieH Poc-
cuiickoll akageMun Hayk, LIIBenckoii KOpOJeBCKOW akaJeMHH WH)XEHEpPHBIX Hayk, FOro-
CJIaBCKOW MH)KEHEPHOI akameMun. UneH-KOpPECHOHICHT HAlMOHATBHBIX HWHKEHEPHBIX
akageMuil Mekcuku, ApreHTuHbl. AkageMuk MeXayHapoaHOH KOCMHYECKOW akaleMUuHu
n MexayHaponHoil eBpo-a3uarckoil akagemun HayK. OxnH u3 mepBbiX B Kurae maype-
aroB mpemun “‘Brimarommiicst Momomoi y4eHsrid”. Jlaypear mpemuii, mpHCYXIEHHBIX B
Kutae u 3arpanunneii: [ocygapcTBeHHas IpeMust 3a IPOrpecc B HAYKE M TEXHUKE, TPEMUS
Annbepra DitHIITeltHa MEXIyHApOIHOM aCCOMAN MaTeMaTHYECKOTO MOJICTUPOBAHNS,
Kuraiickas HarpoHanbHast IpeMus B 00JIaCTH €CTECTBEHHBIX HaykK, [ ocyaapcTBeHHas mpe-
MU 32 Hay4HbIe MyOnuKarn (epepadorka KHUTH “HkeHepHas KnOepHeTHKa ), IpeMUs
3a BBIJAIOIINECS HAaydHBIe HOCTIKEHUSI. ABTop Oonee 100 HaydHBIX pabOT, B TOM dHUCIE
12 monorpadwmii.
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