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OPTIMAL REPRESENTATION OF MULTIVARIATE
FUNCTIONS OR DATA IN VISUALIZABLE
LOW-DIMENSIONAL SPACES1

It is intended to find the best representation of high-dimensional
functions or multivariate data in the L2(Ω) space with the fewest
number of terms, each of them is a combination of one-variable function.
A system of non-linear integral equations has been derived as an
eigenvalue problem of gradient operator in the above-said space. It is
proved that the complete set of eigenfunctions generated by the gradient
operator constitutes an orthonormal system, and any function of L2(Ω)
can be expanded with the fewest terms and exponential rapidity of
convergence. It is also proved as a Corollary, all eigenvalues of the
integral operators has multiplicity equal to 1 if the dimension of the
underlying space Rn is n = 2, 4 and 6.

The analysis and processing of massive amount of multivariate data
or high-dimensional functions have become a basic need in many areas
of scientific exploration and engineering. To reduce the dimensionality for
compact representation and visualization of high-dimensional information
appear imperative in exploratory research and engineering modeling. Since
D. Hilbert raised the 13th problem in 1900, the study on possibility to
express high-dimensional functions via composition of lower-dimensional
functions has gained considerable success [1, 2]. Nonetheless, no methods
of realization are ever indicated, and not even all integrable functions
can be treated this way, a fortiori functions in L2(Ω). The common
practice is to expand high-dimensional functions into a convergent series
in terms of a chosen orthonormal basis with lower dimensional ones.
However, the length and rapidity of convergence of the expansion heavily
depend upon the choice of basis. In this paper an attempt is made to
seek an optimal basis for a given function provided with fewest terms and
rapidest convergence. All elements of the optimal basis turned out to be
products of single-variable functions taken from the unit balls of ingredient
spaces. The proposed theorems and schemes may find wide applications
in data processing, visualization, computing, engineering simulation and
decoupling of nonlinear control systems. The facts established in the
theorems may have their own theoretical interests.

The paper is published without any redaction.
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Due to the limitation of space we report here the primary Theorems
with abridged proofs. The detailed proofs will be contained in a separate
paper.

Let F (x) = F (x1,x2, . . . ,xn) be an arbitrarily given function defined
on the unit cube Ω in Rn , F ∈ L2(Ω),∫

Ω

(
F (x1, x2, ..., xn)

)2
dx1dx2...dxn � M2 <∞, (1)

where x = (x1,x2, . . . ,xn) is a point inRn. It is intended to find a set of one-
variable functions ϕ(xα) whose product ϕ1(x1)ϕ2(x2) . . . ϕn(xn) ∈ L2(Ω)
would best, or optimally, approximate F (x)with the least-square deviation:

L =

∫
Ω

(
F (x1, x2, ..., xn)− ϕ1(x1)ϕ2(x2) . . . ϕn(xn))2 dΩ = min, (2)

where dΩ = dx1dx2 . . . dxn.
Suppose each ψα(xα) is taken from the unit balls Bα ∈ L

(α)
2 (0, 1),

Bα = {‖ψα‖L2(0,1) ≤ 1}, α = 1, 2, . . . , n, the above requirement (2) can
be rewritten as

L = inf
ψα∈Bα

∫
Ω

(F (x)− λ
n∏

α=1

ψα(xα))2dΩ. (3)

Opening up the brackets on the right side we have

∫
Ω

(F (x)− λ
n∏

α=1

ψα(xα))2dΩ =

=

∫
Ω

(F 2(x)− 2λF (x)
n∏
α=1

ψα(xα) + λ2
n∏
α=1

(ψα(xα))2)dΩ.

It is easy to verify that (3) holds if and only if there exists a product of
n functions

∏
α

ϕα, ϕα ∈ Bα, and a real λ ∈ R, λ �= 0, which enable the

following functional to achieve supremum on all unit balls Bα,

λ = sup
ψα∈Bα

∫
Ω

F (x)
n∏
α=1

ψα(xα)dΩ =

=

∫
Ω

F (x1, x2, . . . , xn)ϕ1(x1)ϕ2(x2) . . . ϕn(xn)dx1dx2 . . . dxn. (4)
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For the convenience of discussion in the sequel we distinguish
the same spaces L

(α)
2 (0, 1), α = 1, 2, . . . , n, and construct a product

space Ln2 (0, 1) = L
(1)
2 (0, 1) × L

(2)
2 (0, 1) × . . . × L

(n)
2 (0, 1), L

n
2(0, 1) =

=
{∑

β

aβ

n∏
α=1

ψαβ , ψ
α
β ∈ L

(α)
2 (0, 1), α = 1, 2, . . . , n, β = 1, 2, . . . , N

}
.

After introduction of inner product for ψ, ϕ ∈ Ln2 (0, 1), ψ =
n∏
α=1

ψα,

ϕ =
n∏
α=1

ϕα,

〈ψ, ϕ〉 =
〈

n∏
α=1

ψα,

n∏
α=1

ϕα

〉
=

n∏
α=1

〈ψα, ϕα〉 =
n∏
α=1

∫ 1

0

ψα(xα)ϕα(xα)dxα,

with induced natural norm∥∥∥∥∥
n∏
α=1

ψα

∥∥∥∥∥
Ln2 (0,1)

=
n∏
α=1

‖ψα‖
L
(α)
2 (0,1)

,

Ln2 (0, 1) becomes a linear normed space. The Ln2 (0, 1) defined above can
be embedded into L2(Ω) with preserved norm and becomes a dense subset
of the latter [3, 4], while L(α)2 (0, 1) is a closed subspace of L2(Ω), since
‖ψα‖=

L
(α)
2 (0,1)

‖ψα‖L2(Ω) always holds on Ω the other hand, for the multi-

linear functional f : Ln2 (0, 1)→ R, defined by

f

( n∏
α=1

ψα
)
=

∫
Ω

F (x)
∏
α

ψα(xα)dΩ, (5)

the following inequality holds for every element of Ln2(0, 1):∣∣∣∣∣f
(∏

α

ψα
)∣∣∣∣∣ ≤M

∏
α

‖ψα‖
L
(α)
2 (0,1)

,

where M is the lower bound defined in (1). Hence f is bounded and, by
Banach-Steinhaus theorem, is totally continuous in Ln2(0, 1) [5].

Let Bα be the unit ball of L
(α)
2 (0, 1), Bα = {ψα ∈ L

(α)
2 (0, 1),

‖ψα‖ ≤ 1}, and Bn = B1 × B2 × · · ·Bn. First of all we need the
following Lemma.

Lemma 1. The n-linear form (5) can achieve its supremum on Bn.
Whenever F (x) �= 0, the supremum λ is positive,

λ = sup
ψα∈Bα

∫
Ω

F (x)
∏
α

ψαdΩ > 0. (6)
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Proof. Since all unit balls Bα, α = 1, 2, . . . , n, are weak compact,
by the Banach-Alaoglu theorem, every sequence {ψαk } enabling (4) to
approach supremum contains a subsequence weakly converging to some

element ϕα in Bα [5, 6]. Now we show that there exists a sequence
n∏
α=1

ψαk ,

k = 1, 2, . . ., that converges weakly to an element
n∏
α=1

ϕα ∈ Ln2 (0, 1) at

which the following functional achieves its supremum,

lim
k→∞

∫
Ω

F (x1, · · ·, xn)
∏
α

ψαk dΩ =

=

∫
Ω

F (x1, · · ·, xn)
∏
α

ϕαdΩ = λ = sup
ψα∈Bα

∫
Ω

F (x)
∏
α

ψα(xα)dΩ,

or

lim
k→∞

∫
Ω

F (x1, · · ·, xn)[
∏
α

ψαk −
∏
α

ϕα]dΩ = 0.

Due to the identity∏
α

ψαk −
∏
α

ϕα =

=
∏
α

ψαk − ϕ1ψ2k · · ·ψnk + ϕ1ψ2k · · ·ψnk − ϕ1ϕ2ψ3k · · ·ψnk + · · ·

+ ϕ1ϕ2 · · ·ϕn−1ψnk −
∏
α

ϕα,

we have∫
Ω

F

[∏
α

ψαk −
∏
α

ϕα
]
dΩ =

=
n∑
i=1

∫
Ωi

[ 1∫
0

F · (ψik − ϕi)dxi
] i−1∏
α=1

ϕα
n∏

β=i+1

ψβkdΩi =

=
n∑
i=1

∫
Ωi

Fk

i−1∏
α=1

ϕα ·
n∏

β=i+1

ψβkdΩi,

where dΩi = dx1 · · · dxî · · · dxn; î means without ith coordinate, and

Fk(x
1, · · · , xî, · · · , xn) =

1∫
0

F (x1, · · · , xn)[ψik(xi)− ϕi(xi)] dxi.
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By the weak compactness ofBα, for any fixed point (x1, · · · , xî, · · · , xn)
in Ωi, Fk(x1, · · · , xî, · · · , xn) → 0 as (ψik(x

i) − ϕi(xi)) tends weakly to
0. By the Dominated Convergence Theorem [7], ‖Fk‖L2(Ωi) → 0, k= 1, 2,
. . . , n, hence∣∣∣∣∣∣

∫
Ω

F (x1, · · · , xn)
[∏

α

ψαk −
∏
α

ϕα
]
dΩ

∣∣∣∣∣∣ ≤
n∑
i=1

‖Fk‖L2(Ωi) → 0

as k →∞. This is to be shown for the first part of the Lemma.

To verify the second statement we take an orthonormal basis
{
eβα(x

α),

β = 1, 2, · · ·
}

in each L(α)2 (0, 1) and construct a set E, E =

{ n∏
α=1

eγαα (x
α),

γα = 1, 2, · · ·
}
, each γα runs overN independently. Since Ln2(0, 1) is dense

in L2(Ω), E becomes an orthonormal basis of the latter [4, 8]. Any element
F ∈ L2(Ω) can be expressed uniquely in the form of Fourier series,

F (x1, · · · , xn) =
∞∑
β=1

Pβ

n∏
α=1

eβαα , Pβ =

〈
F,
∏
α

eβαα

〉
L2(Ω)

.

By assumption F �= 0, there must be some Pk �=0. Let ψk=(signPk)
∏
α

ekα.

Substitute the above series into (6), and take inner product with just defined
ψk , we obtain immediately λ > |Pk| > 0, what is claimed in the Lemma.

Now we proceed to establish the necessary conditions which a solution
of (4),

∏
α

ϕα, should satisfy. Suppose the expression (4) achieves its

supremum at some element
∏
α

ϕα ∈ Bn. According to Lagrange Principle,∏
α

ϕα must satisfy the following conditions with a multiplier λ′ [5, 9]:

D

(∫
Ω

F (x1, · · · , xn)
∏
α

ϕαdx − λ′
(〈∏

α

ϕα,
∏
α

ϕα

〉
L2(Ω)

− 1
))
= 0,

(7)
where D denotes the Gateaux directional derivative with respect to all ϕα,
λ′ is a real to be determined. According to the rules of differentiation,

Df =
n∑
i=1

Dif , Dif is the partial derivative with respect to ϕi. Let hi
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be arbitrary element in L(i)2 (0, 1), t ∈[0, 1], λ = 2λ′. A straightforward
computation yields

Dif = lim
t→0
1

t

[
f

(∏
α �=i

ϕα(ϕi + thi
)
−

− f
( n∏
α=1

ϕα
)]
=

〈
Φi

(∏
α �=i

ϕα
)
− λϕi, hi

〉
L
(i)
2 (0,1)

= 0.

Due to the arbitrariness of hi, we have

Φi

(∏
α �=i

ϕα
)
− λϕi = 0, i = 1, 2, · · · n, (8)

or, after unfolding,

λϕi(xi) = Φi

(∏
α �=i

ϕα
)
=

=

∫
Ωi

F (x1, · · · , xn)ϕ1(x1) · · ·ϕî(xi) · · ·ϕn(xn)dx1 · · ·

· · · dxî · · · dxn, i = 1, 2, · · · n, (8’)

where î means absence of ith coordinate, Ωi is the (n − 1) dimensional
unit cube without xi.

The operator Φ = (Φ1, Φ2, . . . ,Φn) generated by G-derivative and
defined in (8’) is called the gradient operator of functional (5). Now we
proceed to prove the following, the primary theorem as a start-point for
further investigation.

Theorem 2. For any given F (x) ∈ L2(Ω), F (x) �= 0, its gradient
operator Φ or, equivalently, the system of homogeneous integral equations
(8’) possesses at least one positive eigenvalue. The greatest eigenvalue
and its associated eigenfunctions satisfy (4), and are a solution of this
supremum problem.

Proof (abridged). It is known that for any given F (x) ∈ L2(Ω),
all components of its gradient operator Φi, defined by (8), are compact
[6, 7], so the range Φi(B

n−1
i ) is a compact subset in L

(i)
2 (0, 1), here

Bn−1 =
{∏
α �=i

ψα(xα), ‖ψα‖ ≤ 1
}
. By Lemma 1, there exists a sequence

in Bn,

{∏
ψαk

}
, weakly convergent to

∏
α

ϕα ∈ Bn as k → ∞ so that

the following holds,
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lim
k→∞

〈
Φi

(∏
α �=i

ψαk

)
, ψik

〉
L2(0,1)

=

=

〈
Φi

(∏
α �=i

ϕα
)
, ϕi

〉
L2(0,1)

= λ, i = 1, 2, · · · , n.

Now we construct new functions,

ηik(x
i) = λψik − Φi

(∏
α �=i

ψαk

)
=

= λψik(x
i) −

∫
Ωi

F (x1, x2, · · · , xn)ψ1k(x1) · · ·

· · ·ψ îk · · ·ψnk (xn)dx1 · · · dxî · · · dxn, ‖ψαk ‖ ≤ 1, i = 1, 2, · · · , n.
An accurate calculation of the norm of ηik shows that Lemma 1 implies

also while
∏
α

ψαk approaches weakly to its limit
∏
α

ϕα, ηik strongly tends

to zero. Namely,

lim
k→∞

〈
ηik, η

i
k

〉
= lim

k→∞

∥∥∥∥∥λψik − Φi(
∏
α �=i

ψαk )

∥∥∥∥∥
2

= 0, i = 1, 2, · · · , n.

This indicates, the sequence {ψαk , α = 1, 2, · · · , n, k = 1, 2, · · · } has a
strong limit, denoted again by {ϕα, α = 1, 2, . . . , n}, which satisfies (8).
Taking inner product for (8’) with ϕi, we obtain finally,〈
Φi

( ∏
α = 1
α �= i

ϕα
)
, ϕi

〉
=

=

∫
Ω

F (x1, x2, · · · , xn)ϕ1(x1)ϕ2(x2) · · ·ϕn(xn)dx1dx2 · · · dxn = λ, (9)

that is,
∏
α

ϕα is a solution of (8), as claimed in the Theorem.

Let λ1 and
n∏
α=1

ϕα1 are the greatest eigenvalue and its associated

eigenfunctions, respectively. Construct new function

F1(x
1, x2, · · · , xn) = F0(x1, x2, · · · , xn)− λ1

n∏
α=1

ϕα1 (x
α).
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Let F1 �= 0. It is easy to check that the norm of F1in L2(Ω) can be calculated
as

‖F1‖2 =
〈
F0 − λ1

∏
ϕα1 , F0 − λ1

∏
ϕα1

〉
=

= ‖F0‖2 − 2λ1
〈
F0,

∏
ϕα1

〉
+ λ21

〈∏
ϕα1 ,

∏
ϕα1

〉
= ‖F0‖2 − λ21.

So long as F1 �= 0, the Lemma 1 and Theorem 2 are applicable for F1 as
well. Having F0 replaced by F1 in (8), one gets a new operator Φ1 and,
correspondingly, new system of equations (8’).

By Theorem 2, it possesses at least one positive eigenvalue λ2 and
associated eigenfunctions

∏
α

ϕα2 of (8) with F replaced by F1. Similarly,
we have

F2 = F1 − λ2
n∏

α=1

ϕα2 = F0 − λ1
n∏
α=1

ϕα1−λ2
n∏
α=1

ϕα2 ,

with its norm

‖F2‖2 = ‖F1‖2 − λ22 = ‖F0‖2 − λ21 − λ22.

The process can be continued inductively, if FN �= 0,

FN = FN−1 − λN
n∏

α=1

ϕαN = F0 −
N∑
β=1

λβ

n∏
α=1

ϕαβ , (10)

and

‖FN‖2 = ‖FN−1‖2 − λ2N = ‖F0‖2 −
N∑
β=1

λ2β . (11)

Further, each FN generates its own gradient operatorΦN = (ΦN1, . . . ,ΦNn),

ΦNi

(∏
α �=i

ϕαN+1

)
=

∫
Ωi

FN (x)
∏
α �=i

ϕαN+1(x
α)dΩi = λN+1ϕ

i
N+1(x

i),

i = 1, 2, · · · , n. (12)

If the process continues infinitely, (10) becomes an infinite series. Now we
prove that the following equality holds as N →∞ in the norm of L2(Ω),

F0(x
1, x2, · · · , xn) =

∞∑
β=1

λβ

n∏
α=1

ϕαβ(x
α). (13)

40 ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2005. № 4



Theorem 3. Any given F (x) ∈ L2(Ω), F �= 0, can be expressed
in the form of series (13) with all positive eignevalues and associated
eignefunctions generated by the sequence of gradient operators {Φβ}. The
series (13) converges exponentially to F (x) in the norm of L2(Ω).

Proof. If the process of construction described in (10) terminates at a
finite step N , the validity of the first part of Theorem is apparent. Now
suppose that (10) becomes an infinite series (13) when N → ∞. It is
obvious from (10), however large is N , one always has ‖FN‖2 ≥ 0 , and

N∑
β=1

λ2β � ‖F0‖2 . (14)

The necessary condition of convergence for the series on the left side is
λN →0 as N → ∞, and (6) implies that the following relationship holds
uniformly on Bn,

λN+1 = sup
ψα∈Bα

∫
Ω

FN(x)
∏
α

ψα(xα)dΩ =

〈
FN(x),

∏
α

ϕαN+1

〉
L2(Ω)

≥

≥
∣∣∣∣∣∣
〈
FN(x),

∏
α

ψα

〉
L2(Ω)

∣∣∣∣∣∣ , ∀ψα ∈ Bα ,

here
∏
α

ϕαN+1 is a solution of (6) and (8) with F0(x) replaced by FN (x).

Therefore, when N →∞,

lim
N→∞

〈
FN (x),

∏
α

ψα

〉
L2(Ω)

→ 0, ∀ψα ∈ Bα, α = 1, 2, · · · , n.

It is evident that Bn is a fundamental set, i.e., it spans Ln2(0, 1), is a
dense subset of L2(Ω). The above condition suffices for FN to converge
weakly-star to some element F∞ which is equivalent to 0 in the weak
topology [4],

lim
N→∞

sup
Bn

∫
Ω

FN(x)
∏
α

ψα(xα)dΩ = sup
Bn

〈
F∞,

∏
α

ψα

〉
L2(Ω)

= 0.

Recall the fact that the set E =

{∏
α

eγαα , γα ∈ N

}
consisting of

combinations of orthonormal bases of L(α)2 (0, 1) is a complete orthonormal
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basis for L2(Ω). NoticeE ⊂ Bn , by Lemma 1, it implies

0 = sup
Bn

〈
F∞,

∏
α

ψα

〉
≥ sup

E

〈
F∞,

∏
α

eγαα

〉
� 0.

Which means all Fourier coefficients of F∞ are zero, hence F∞= 0. Then
(13) holds in the sense

‖F0‖2 =
∞∑
β=1

λ2β . (15)

Now we proceed to justify the second statement claimed in the Theorem
about the convergence rapidity of the expansion (15). By assumption all
Fβ �= 0, and due to (10) and (11), the following relations and the continuous
multiplication are well defined,

‖F1‖2
‖F0‖2

=
‖F0‖2 − λ21
‖F0‖2

= 1− λ21

‖F0‖2
, · · ·

· · · , ‖FN‖
2

‖FN−1‖2
=
‖FN−1‖2 − λ2N
‖FN−1‖2

= 1− λ2N

‖FN−1‖2
,

‖FN‖2
‖F0‖2

=
‖FN‖2
‖FN−1‖2

‖FN−1‖2
‖FN−2‖2

· · · ‖F2‖
2

‖F1‖2
‖F1‖2
‖F0‖2

=
N∏
β=1

(
1− λ2β

‖Fβ−1‖2
)
.

Denote α2β =
λ2β

‖Fβ−1‖2
, namely λβ = αβ ‖Fβ−1‖. By the proved previously,

0 < αβ ≤ 1, and notice that the inequality (1 − α) ≤ e−α always holds,
then we have

‖FN‖2 = ‖F0‖2
N∏
β=1

(1− α2β) � ‖F0‖2 e
−
N∑

β=1
α2β
,

or

‖FN‖ ≤ ‖F0‖ e
−1
2

N∑

β=1
α2β
. (16)

Let RN+1 = ‖FN‖2 =
∞∑

β=N+1

λ2β be the sum of residual part of (15). It is

easy to show the sum
N∑
k=1

α2k =
N∑
k=1

λ2k
Rk
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diverges to infinity as N → ∞ [10], and the right side of (16) tends to
zero exponentially as claimed in the Theorem. The unconditionality of
convergence of (13) will be provided by Proposition 4.

In the above discussion we did not touch upon the properties of the
set of eigenfunctions. We will see below, it is quite similar to the case of
symmetrical integral operators, the set of all eigenfuctions generated by
(12) constitutes an orthonormal system in L2(Ω).

Proposition 4. For arbitrarily given F (x) ∈ L2(Ω), F �= 0, the set

of all eigenfunctions

{∏
α

ϕαβ , β = 1, 2, . . .

}
of the sequence of gradient

operatorsΦβ = (Φβ1, . . . ,Φβn), defined by (12), constitutes an orthonormal
system as an ingredient part of some complete orthonormal basis of L2(Ω).

Proof. By definition of FN , the identities

〈
Fβ,

∏
α

ϕαβ

〉
= 0 hold

for all β = 1, 2, . . . , N . Each ϕαN+1 can be decomposed uniquely
as ϕαN+1 = aαϕ

α
N + bαϕ̄

α
N+1, ϕ

α
N⊥ϕ̄αN+1, and aα, bα be constants of

normalization. A substitution for ϕαN+1 yields

∏
α

ϕαN+1 =

=C0
∏
α

ϕαN+C1

n∑
i=1

ϕ̄iN+1
∏
α �=i

ϕαN+ · · ·+Cn
∏
α

ϕ̄αN+1 =C0
∏
α

ϕαN+PN+1.

Clearly, PN+1⊥
∏
α

ϕαN . Thus, due to the identities said above,

λN+1 =

〈
FN ,

∏
α

ϕαN+1

〉
= C0

〈
FN ,

∏
α

ϕαN

〉
+ 〈FN , PN+1〉 =

= 〈FN−1, PN+1〉. It follows
∏
α

ϕαN⊥
∏
α

ϕαN+1. Similar analysis of ϕαβ

for β = N − 1, . . . , 1 in succession, one obtains

λN+1 = sup
ψα∈Bα

∫
Ω

FN(x)
∏

ψαdΩ =

= sup
ψα∈Bα

ψα∈(L(α)N )⊥

∫
Ω

F0(x)
∏
α

ψαdΩ =

∫
Ω

F0(x)
∏
α

ϕαN+1dΩ. (17)

This being true for all N ∈ N follows the set of eigenfunctions{∏
α

ϕαβ , β = 1, 2, . . .

}
constitutes a orthonormal system in L2(Ω). Since

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2005. № 4 43



for any orthonormal set S in a Hilbert space there is a complete orthonormal
basis that contains S as its subset [11]. The Proposition is thus justified.

Remark. It appears the remarkable maximum property of gradient
operators expressed in (17), which is entirely analogous with compact self-
adjoint operators in Hilbert spaces. The Proposition also shows there are as
many different orthonormal bases as the cardinality of different elements
in L2(Ω).

Corollary 5. If the dimension of underlying space Rn with n = 2, 4
and 6, all eigenvalues of gradient operators defined by (11) for arbitrarily
given F (x) ∈ L2(Ω), F (x) �= 0, have multiplicity no more than 1.

Proof (abridged). Suppose the contrary, if there exist two different
eigenfunctions ϕ1 =

∏
α

ϕαN+1,1 and ϕ2 =
∏
α

ϕαN+1,2 corresponding to the

same eigenvalue λN+1, which enable the following functional to achieve
its supremum on Bn,

λN+1 = sup
ψα∈Bα

fN (
∏
α

ψα) =

= sup
ψα∈Bα

∫
Ω

FN (x)
∏
α

ψαdΩ = fN (
∏
α

ϕαN+1,k), k = 1, 2. (18)

Now construct a new element ϕ3 =
∏
α

(tϕα1 + (1− t)ϕα2 ), t ∈ [0, 1], and
put it into (18). After exposing the product, we have

fN(ϕ3, t) = fN

(∏
α

(tϕα1 + (1− t)ϕα2 )
)
=

= tnfN

(∏
α

ϕα1

)
+ tn−1(1− t)fN

( n∑
i=1

ϕi2
∏
î

ϕα1 )+

+ tn−2(1− t)2fN
(∑
i�=j

ϕi2ϕ
j
2

∏
îĵ

ϕα1

)
+ . . .

. . .+ t2(1− t)n−2fN
(∑
i�=j

ϕi1ϕ
j
1

∏
ϕα2

)

+ t(1− t)n−1fN
( n∑
i=1

ϕi1
∏
î

ϕα2

)
+ (1− t)nfN

(∏
α

ϕα2

)
. (19)

By Proposition 4, ϕi1 and ϕ
i
2 are mutually orthogonal. Dropping index

N for brevity, we have the necessary condition,

Df = f

(∑
i

hi1
∏
î

ϕα1

)
=
∑
i

〈
ϕi1, h

i
1

〉
λ = 0, ∀hi1 ∈ L(i)2 (0, 1).
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Take hi = ϕi2 in the above we see that the second term and the second
from the end are zero. For computing the rest terms in the exposition (19)
we invoke the sufficient conditions for f to achieve its maximum at ϕ. If
the dimension of the underlying space, Rn, n is even, then the following
equations must be satisfied [9, 11],

Dkf

(∏
α

ϕα
)
= 0, k = 1, 2, · · · , n− 1. (20)

A direct calculation shows

D2f

(∏
α

ϕα1

)
= 2f

(∑
i�=j

hi1h
i
2

∏
îĵ

ϕα1

)
−
∑
i

〈
hi1, h

i
2

〉
λ = 0

for arbitrary hi1 and hi2 taken from L
(i)
2 (0, 1). Let h

i
1 = hi2 = ϕi2. We get

the value of the third term,

fN

(∑
i�=j

ϕi2ϕ
i
2

∏
îĵ

ϕα1

)
=
n

2
λN+1.

The third term from the end of (19) is in complete symmetry with the
above, and, due to (20), all the rest terms are zero except the first and last
ones. Then,

fN(ϕ3, t) =

(
tn + tn−2(1− t)2n

2
+ t2(1− t)n−2n

2
+ (1− t)n

)
λN+1.

It follows from the assumption, fN (ϕ3, 0) = fN(ϕ3, 1) = λN+1, and it
reaches minimum at t = 1/2. Let t = 1/2. It yields

fN

(
ϕ3,
1

2

)
= fN

(∏
α

ϕα1 + ϕ
α
2

2

)
= (2 + n)2−nλN+1.

Since ‖ϕα1 + ϕα2‖ =
√
2,
ϕα1 + ϕ

α
2√

2
∈ Bα, we have

fN

(
ϕ3,

1√
2

)
= fN

(∏
α

ϕα1 + ϕ
α
2√

2

)
= (2 + n) · 2−n2 λN+1 = ρ(n)λN+1.

It is evident, if ρ(n) ≥ 1 then (ρ(n))
1
n ≥ 1, so that

∏
α

ϕα1 + ϕ
α
2√

2ρ
1
n

∈ Bn.

A direct computation shows this is possible only for n = 2, 4 and 6. In
these cases if ϕ=1

∏
α

ϕαN+1,1, and ϕ
=
2

∏
α

ϕαN+1,2 both render the supremum
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λN+1 to the functional fN , then along the direction of the middle point
ϕ3 of segment joining ϕα1 and ϕα2 , also provides the supremum λN+1 to
fN . By the assumption ϕ1 �= ϕ2, there must be infinite amount of different
elements in Bn at each of them fN attains its supremum. This contradicts
the compactness of gradient operators. That is, for n = 2, 4, and 6, the
multiplicity of any eigenvalue of (12) is no more than 1. This completes
the proof of the corollary.

The case n = 2 may cause particular theoretical interest [12,13]. Let
F (x, y) be defined on the unit rectangle B2 of the plane and be square-
integrable. By Theorem 2, it generates a gradient operator Φ, and (8) is
reduced to

Φψ =

1∫
0

F (x, y)ψ(y)dy = λϕ, Φ∗ϕ =

1∫
0

F (x, y)ϕ(x)dx = λψ. (21)

Apparently, ϕ and ψ are eigenfunctions of self-adjoint operators

ΦΦ∗ϕ = λ2ϕ, Φ∗Φψ = λ2ψ.

Corollary 5 claims for this case that all eigenvalues of Φ have multiplicity
no more than 1. Indeed, suppose the contrary. Let ϕ1(x)ψ1(y) and
ϕ2(x)ψ2(y) provide the same supremum λ1 on B2,

λ1 = sup
ϕψ∈B2

∫
Ω

F (x, y)ϕ(x)ψ(y)dxdy =

=

∫
Ω

F (x, y)ϕk(x)ψk(y)dxdy, k = 1, 2. (22)

By Proposition 4, ϕ1⊥ϕ2 and ψ1⊥ψ2. Let
ϕ3ψ3 = (tϕ1 + (1− t)ϕ2)(tψ1 + (1− t)ψ2), 0 � t � 1.

It is easy to check,∫
Ω

F (x, y)ϕ3(x)ψ3(y)dxdy = (1− 2t+ 2t2)λ1, ‖ϕ3ψ3‖ = 1− 2t+ 2t2,

thus ∫
Ω

F (x, y)
ϕ3(x)ψ3(y)

‖ϕ3ψ3‖ dxdy = λ1, ∀t ∈ [0, 1].

This means the functional reaches λ1 on B2 along all rays from the
origin and intersecting any point of segments joining ϕ1, ϕ2 and ψ1, ψ2.
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It contradicts the assumption and implies λ1 is not supremum of the
functional. One may notice, this is true if F (x, y) replaced by FN(x, y) =

= F (x, y) −
N∑
β=1

λβϕβψβ in (21). In particular, if F (x, y) = F (y, x), it

generates a self-adjoint operator, Φ = Φ∗, the above conclusion is also true
for this special case of the fact described above.

From the geometrical point of view, it is known that the unit ball B
of L2(Ω) is strictly and uniformly convex [14,15]. It is believed that the
B∩Bn possesses the same property. The equations (18) create a supporting
tangent hyperplane toBn in L2(Ω). A conjecture arises that the claim made
in Corollary 5 would be true for any finite dimensional underlying spaces
Rn. But we have had direct proof only for n even and n ≤ 6. So the general
question remains still open.

One may wonder what is the condition to be imposed on F (x) for
guaranteeing the convergence of the series (13) in space L1(Ω) and in the
Banach space of continuous functions C(Ω). The question arisen is that the
assumption (1) is not enough to ensure the convergence of the infinite sum∑
β

λβ except F (x) generates a nuclear gradient operators [16]. However,

for our cases, according to the theories developed in [17, 18, 19], we can
establish the following Theorem. We list it with the proof omitted.

Theorem 6. For any given function F (x) ∈ L2(Ω), the series (13)
converges uniformly in L1(Ω). If F (x) is continuous on Ω and possesses
all continuous first partial derivatives in Ω, then the series of expansion
(13) converges uniformly to the continuous function F (x).

It is worth to re-emphasize, Theorem 3 and Proposition 4 have shown
that for any high-dimensional square-integrable function F (x) there exists
an optimal orthonormal system of its own, consisting of eigenfunctions
of its gradient operator, in terms of which F (x) can be expanded with
shortest length and rapidest convergence. Since each element of the system
is a product of n single-variable functions, this may be a reliable way
for reduction of dimensionality and compact expression of information
contained in F (x) in one-dimensional spaces. The inequality (16) provides
a posteriori error estimate, in the process of computing the remaining error
can be precisely estimated after completion of each step of calculation, this
is thus a difference from a priori error estimate.

We recall that L2(Ω) and l2, the space of square-summable sequences of
reals, are isometrically isomorphic. Each element of L2(Ω) has its spectral
image in l2 according to bases chosen in each spaces. If one identifies
the square of norm of F (x) ∈ L2(Ω) with the energy or information it
carries, in terminology of physics, the outcome of Theorems presented in
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this paper is to assert that for any given F there exists an optimal basis
in L2(Ω) which furnishes the element with an image sharply concentrated
on a few of spectrum-lines in l2, if the latter is equipped with canonical
basis. This may be in marked contrast with a flat spread of spectral lines
with respect to a casually chosen basis for spectral analysis as it happens
in many cases of practices.

The results presented in this paper may find wide applications in
computational mathematics and engineering sciences, particularly in the
field of control theory and automation [20]. Take a typical example, if a
hypersurface or mainfold in Rn, xn = F (x1, x2, . . . , xn−1), is needed to
be stored, the amount of data is measured as Nn−1 + N,N is the mean
number of discrete samplings for each variable. If l terms are taken in
(13) to represent F , the amount of data to be stored or processed will be
reduced to nlN , a 1/Nn−2 times less than previously needed. Engineering
practice had shown, sometimes to take two to three terms of (13) would
be precise enough to represent a given higher dimensional function by the
sum of products of one-variable functions [20].

The problems we investigated in this paper are related to a topic posed
and studied by Liapunov A.M. at the beginning of 20th century, he called it
power series integral equations and imposed severe restriction on the given
function. He required F (x1, x2, . . . , xn) to be totally symmetric, that means
the exchange of any two among n variables retains F unchanged [21,22].
The general properties of n-multilinear forms have been elucidated in [5,
6, 7]. Krasnoselsky M.A. proved that if F is strictly positive and totally
symmetric, F ∈ L2(Ω), 0 < m ≤ F ≤ M < ∞, the following integral
equation

Φ

( n∏
i=1

ϕ(ti)

)
=

=

∫
Ω

F (s, t1, t2, · · · tn
)
ϕ(t1)ϕ(t2) · · ·ϕ(tn)dt1dt2 · · · dtn = λϕ(s)

possesses at least one positive eigenvalue [22]. Wainberg M.M. had
shown that for a totally symmetric F ∈ L2(Ω) all components of the
gradient operator Φ generated by F are compact, and the functional〈
Φ

( n∏
i=1

ϕ(ti)

)
, ϕ(s)

〉
is weak continuous respect to ϕ, it achieves its

supremum value on the unit ball [21]. It is obvious, the results we obtained
in this paper cover most cases studied by these earlier investigators.

The author expresses his gratitude to professors Lin Qun, Guo Lei,
Qin Hua-Shu, Guo Bao-Zhu and Cheng Dai-Zhan of the Institute of
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Mathematics and System Sciences, Chinese Academy of Sciences, for their
interest and the time they spent for discussion and checking the proofs of
Lemma and Theorems. Their advice and suggestions are extremely valuable
for improvement of the paper and helpful for the author to achieve some
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