

Виктор Васильевич Сидоренков родился в 1946 г., окончил в 1976 г. МИРЭА и в 1980 г. МГУ им. М.В. Ломоносова. Канд. физ.-мат. наук, доцент кафедры "Физика" МГТУ им. Н.Э. Баумана. Автор около 100 научных работ в области физики твердого тела и радиофизики.

V.V. Sidorenkov (b. 1946) graduated from the Moscow Institute for Radio Electronics and Automatics in 1976 and Moscow State University n.a. M.V. Lomonosov in 1980. Ph. D. (Phys.-Math.), assoc. professor of "Physics" department of the Bauman Moscow State Technical University. Author of about 100 publications in the field of physics of solid body and radio physics.

УДК 621.793.182

А.А.Костин

ДВИЖЕНИЕ И ФОРМА КАТОДНОГО ПЯТНА ВАКУУМНОЙ ДУГИ НА ПОВЕРХНОСТИ ЦИЛИНДРИЧЕСКОГО КАТОДА

Представлены экспериментальные данные о движении и форме катодного пятна вакуумной дуги на протяженном цилиндрическом титановом катоде. Показано, что пятно движется по поверхности катода прямолинейно. Это позволяет определить с необходимой точностью скорость перемещения пятна по катоду. Представлены результаты измерений скорости движения пятна, его траектория, а также формы и размеры кратера катодного пятна и плазменной короны в зависимости от силы тока дуги.

В связи с активным использованием вакуумных дуговых источников плазмы широкое применение получила технология нанесения защитных и упрочняющих покрытий. Универсальные свойства получаемых покрытий позволяют использовать их для увеличения износостойкости, снижения коэффициента трения и защиты от коррозии. Перспективы развития и особенности технологии вакуумного дугового нанесения защитных покрытий на основе нитрида титана не раз обсуждались в современной отечественной и зарубежной научной литературе [1, 2].

Вакуумная дуга и происходящие в ней процессы интересуют исследователей уже много лет. Однако однозначности и определенности даже в терминах и характеристиках вакуумного дугового разряда пока не существует. Например, коллективная монография [3] под редакцией Дж.М. Лафферти, посвященная исследованиям в этой области науки, содержит противоречивые точки зрения. В главах данной книги, написанных разными авторами, имеются противоречия в оценках даже одних и тех же экспериментальных фактов и в терминологии [3].

Рис. 1. Схема катодного узла:

1 — титановый катод; 2 — катодное пятно; 3 — дугогаситель; 4 — устройство поджига; 5 — стенка камеры; 6 — токоподвод

Различные типы конструкций катодных узлов и систем с вакуумными дуговыми испарителями представлены в обзоре [4].

Настоящая работа посвящена определению характера движения и скорости перемещения катодного пятна, а также определению геометрии плазменной короны пятна в зависимости от силы тока дуги.

Для нанесения покрытий из нитрида титана на крупногабаритные изделия была разработана конструкция катодного узла с протяженностью зоны эрозии катода до 1600 мм. Описание катодного узла дано в настоящей работе, а его схема представлена на рис. 1. Узел состоит из собственно катода — титановой трубы диаметром 56 мм, узлов систем поджига и гашения дуги, а также системы охлаждения. Такая конструкция позволяет повысить скорость эрозии материала катода за счет увеличения силы тока дуги, а надежная схема охлаждения — снизить количество образуемых капель в нанесенном покрытии. Указанные особенности выгодно отличают предложенную конструкцию от известных схем катодного узла.

В разработанной конструкции используется свойство пятна стремиться в точку, ближайшую к месту токоподвода. Последовательность работы катодного узла состоит в следующем. Пятно инициируется устройством поджига (пробой происходит по поверхности керамической вставки, на которую первоначально наносится графитовая пленка). Затем пятно движется вдоль охлаждаемого трубчатого катода и гаснет в дугогасящем устройстве. Рабочий цикл горения дуги заключается в периодическом повторении процесса зажигания дуги, движения дуги вдоль катода и гашения дуги в дугогасителе. Исследования производи-

Рис. 2. Схема съемки и движения пятна:

1 — титановый катод; 2 — катодное пятно; 3 — дугогаситель; 4 — устройство поджига; 5 — камера; 6 — прямолинейное движение пятна; 7 — спиральное движение пятна; 8 — смотровое окно

лись на рабочем макете, который отличается от реальной конструкции лишь длиной рабочей части. Катодом является водоохлаждаемая титановая труба диаметром 56 мм, длина рабочей зоны — 0,5 м (см. рис. 1). Эксперименты проводились при давлении 10⁻⁴ мм. рт. ст. Ток дуги менялся в диапазоне 40...80 А.

Описание эксперимента. Для фиксирования и последующей обработки данных эксперимент снимался на видеокамеру. Результаты эксперимента фиксировались только при устойчивом горении дуги. Частота поджига дуги задавалась генератором и в эксперименте являлась постоянной величиной; время между импульсами составляет $\tau = 0.8$ с, энергия импульса — 6 Дж, время импульса — 3 мс.

При описании траектории движения пятна по поверхности катода используют понятия прямолинейного движения пятна по направляющей цилиндрического катода и спирального движения пятна по винтовой линии (см. рис. 2).

Результаты эксперимента. Для обработки полученных результатов отснятые материалы оцифровывались, что позволило с использованием программного обеспечения сделать покадровую развертку изображения. При известной частоте смены кадров определялось время пробегания дуги по поверхности катода, а при известной длине катода определялась скорость движения пятна при различных токах. Покадровая развертка представлена на рис. 3. Зная время движения пятна tи длину катода L = 0,5 м, скорость пятна определяли по формуле

$$V = L/t$$
.

Время *t* определяли как среднюю величину по 4–6 измерениям. Результаты измерений приведены в табл. 1.

Рис. 3. Покадровая развертка движения катодного пятна

Таблица 1

Скорости и траектории движения катодного пятна

Ток разряда, А	Время, с	Скорость, м/с	Траектория движения	Угловая скорость, об/с
40	0,20	2,50	Прямая линия	
60	0,16	3,13	Винтовая линия	6,25
80	0,10	5,0	Винтовая линия с боль- шим шагом	3,125

Данные о скорости перемещения катодного пятна приведены во многих работах, однако результаты измерений зависят от конкретных условий эксперимента и получены для сильно различающихся конструкций из различных металлов в присутствии внешнего магнитного поля. Например, в работе [5] приведена скорость движения катодного пятна на бериллиевом катоде. Она составляет 1...5 м/с. Эксперименты, связанные с движением катодного пятна на катодах из жидких металлов (например, ртути), описаны в работе [6]. Здесь скорость движения пятна составляет 70 м/с.

Рис. 4. Зависимость скорости движения катодного пятна от тока дуги

В настоящей статье представлены результаты измерений, которые проводились на титановом охлаждаемом катоде без внешнего магнитного поля при токах 40 A, 60 A и 80 A. По результатам экспериментов построен график (см. рис. 4) зависимости скорости движения пятна от силы тока дуги.

Соотношение между площадью пятна на катоде и радиусом сферы короны пятна. Для определения площади проекции короны пятна на катод и радиуса короны был сделан ряд фотографий катодных пятен при токах 40 A, 60 A, 80 A. Затем были сняты средние размеры короны с учетом угла съемки и масштабов. С помощью микроскопа при увеличении в 300 раз были получены фотографии кратеров при токе дуги 60 A и 80 A. Фотографии кратеров представлены на рис. 5 и рис. 6.

Обозначим δ отношение радиуса короны r к радиусу R площади проекции плазменной короны на катод: $\delta = r/R$. Среднее значение

Рис. 5. Фотография кратеров вакуумной дуги при токе 60 А

Рис. 6. Фотография кратеров вакуумной дуги при токе 80 А

этого отношения определялось по формуле

$$\delta_{ ext{cp}} = rac{1}{i} \sum \delta_i.$$

Размер плазменной короны ограничен контрастностью изображения на фотопленке (что зависит от чувствительности). В работе [7] приводятся параметры плазмы катодного пятна. Плазма катодного пятна характеризуется высокой плотностью (до 10^{20} см⁻³), сильной неоднородностью в малых объемах и малым временем протекания процессов. Целью проведенного эксперимента не являлось строгое определение размеров плазменной короны. В эксперименте предполагалось определить геометрические пропорции плазменной короны с использованием отношения радиусов плазменной короны и ее площади проекции на поверхность катода. Результаты измерений приведены в табл. 2.

Таблица 2

Ток	Радиус короны,	Радиус площади проекции	Отношение	Среднее
разряда,	MM	плазменной короны на	радиусов δ	значение
А		катоде, мм		$\delta_{ m cp}$
40	25,2	22,4	0,880	0,917
	26,6	25,2	0,947	
	8,2	16,8	0,923	
60	12,2	11,2	0,923	0,917
	10,3	9,35	0,909	
	18,7	17,2	0,920	
80	23,0	20,0	0,920	0,937
	15,2	14,1	0,933	
	19,1	18,3	0,958	

Геометрические соотношения плазменной короны катодного пятна

Полученные экспериментальные данные о движении, траектории и геометрии катодных пятен представлены в табл. 3. Они характеризуют движение катодного пятна по поверхности охлаждаемого титанового катода.

Используемая в экспериментах конструкция катодного узла позволила с помощью простых измерений с необходимой точностью определить скорость перемещения пятна по поверхности охлаждаемого титанового трубчатого катода и оценить геометрические пропорции катодных пятен. Результаты измерений скорости движения катодного пятна показали, что ее значение практически линейно зависит от силы тока дуги.

Скорость, траектория и геометрические соотношения плазменной короны катодного пятна

Ток разряда, А	Скорость, м/с	Траектория	Геометрические пропорции, r/R
40	2,50	Прямая линия	0,917
60	3,13	Винтовая линия	0,917
80	5,0	Винтовая линия с большим шагом	0,937

Проведенные исследования позволили уточнить геометрию катодного пятна. Было выявлено, что отношения радиуса плазменной короны к радиусу площади ее проекции на поверхность катода практически не изменяются при различных значениях тока и близки к единице. Это говорит о том, что форма плазменной короны близка к сферичной. Следовательно, плазменную корону можно рассматривать как полусферу, что позволяет считать катодное пятно сферически симметричной системой.

СПИСОК ЛИТЕРАТУРЫ

- 1. Б у р о в И. В., Л и с е н к о в А. А. Современное состояние и перспективы развития технологии вакуумного дугового нанесения износостойких покрытий // Вакуумная техника и технология. 2002. Т. 12, № 1. С. 55–60.
- R u d e n j a S., K u l u P., T a l i m e t s E., M i k l i V. Corrosion Performance and Structure of the Titanium-Based Coatings Deposited onto Stainless Steel Substrate with Arc. Plating // Proc. 42nd Annual Technical Conference "Society of Vacuum Coaters". – Tallinn: Technical University, 1999.
- 3. В акумные дуги / Под ред. Дж.Л. Лафферти. М.: Мир, 1982.
- 4. Аксенов И.И., Падалка В.Г., Хороших В.М. Формирование потоков металлической плазмы: Обзор. М.: ЦНИИатоминформ, 1984.
- 5. А н д р е е в А. А. Газовый разряд, ППР и их применения, электронно-магнитная модель катодного пятна вакуумной дуги // Вопросы атомной науки и техники. Сер. плазм. электроника и новые методы ускорения частиц. 2003. Вып. 4. С. 220–225.
- 6. К е с а е в И.Г. Катодные процессы электрической дуги. М.: Наука, 1968.
- 7. М е с я ц Г. А. Эктон лавина электронов из металла // УФН. 1995. Т. 165, № 6. С. 601–625.

Статья поступила в редакцию 22.03.2005

Андрей Александрович Костин родился в 1979 г., окончил в 2002 г. МГТУ им. Н.Э. Баумана. Аспирант кафедры "Плазменные энергетические установки" МГТУ им. Н.Э. Баумана.

A.A. Kostin (b. 1979) graduated from the Bauman Moscow State Technical University in 2002. Post-graduate of "Plasma Power Facilities" department of the Bauman Moscow State Technical University.