М. П. Галанин, С.С. Уразов

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ КВАЗИСТАЦИОНАРНЫХ ЭЛЕКТРО-МАГНИТНЫХ ПОЛЕЙ В ОБЛАСТЯХ С НЕГЛАДКИМИ ГРАНИЦАМИ ПРОВОДЯЩИХ И ДИЭЛЕКТРИЧЕСКИХ ПОДОБЛАСТЕЙ*

Рассмотрены методы математического моделирования квазистационарных электромагнитных полей в резко неоднородных средах, позволяющие избежать появления ряда особенностей решения вблизи угловых точек. Рассмотрены двумерный и трехмерный случаи. Представлены алгоритмы построения решения нестационарных задач с явным учетом особенности. Используемые алгоритмы позволяют существенно сократить число шагов по времени и уменьшить число итераций, необходимое для получения численного решения.

Области, в которых исследуются электромагнитные поля [1], обычно состоят из проводящих и непроводящих (диэлектрических) подобластей, границы которых могут содержать ребра, конические и угловые точки. При использовании для описания электромагнитных полей квазистационарного приближения уравнений Максвелла [1] появляется необходимость решения уравнений различного типа в дизлектрических и проводящих подобластях. После введения дополнительных условий в диэлектрической подобласти (для обеспечения единственности решения) поля описываются эллиптическими уравнениями, а в проводящей — параболическими. Кроме того, построенная таким образом математическая модель содержит уравнения с разрывными коэффициентами. Все это может привести к появлению особенностей и ухудшению точности решения при численном моделировании. Для получения численного решения в рассматриваемых областях возможно использование алгоритмов, явным образом выделяющих особенность решения, или преобразование модели с учетом особенности.

При наличии в области угловых точек (см., например, [2]) регулярность решения зависит не только от дифференциальных свойств граничных функций и правой части уравнения. В частности, в рассматриваемых нами задачах в двумерном случае при наличии движения в системе решение имеет особенность в диэлектрической подобласти вблизи угловой точки [1].

^{*}Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (проект РФФИ № 06-01-00421) и Фонда содействия отечественной науке.

Рис. 1. Схема расчетной области: *1* – рельс; *2* – якорь

Исследованию дифференциальных свойств решения задач Лапласа и Пуассона в областях с угловыми точками посвящено большое число публикаций. Задачи с разрывными граничными условиями в областях с гладкой границей приведены в работе [3]. Области с угловыми и коническими точками рассмотрены в работах [4–6], кубические области – в [5, 7]. Среди

новейших публикаций отметим, прежде всего, работу [8], в которой исследуются дифференциальные свойства решения в областях с угловыми и коническими точками и вблизи ребер области. Для решения задач в указанных областях предложены различные способы, например, использование разностных схем с переменными коэффициентами вблизи особенности [6], построение решения в полярных координатах вблизи угловой точки и использование специальных операторов склейки для соединения с остальной областью [9, 10]. Однако такие методы значительно усложняют вид разностных схем, причем в рассматриваемых в настоящей работе задачах граничные (в смысле, разъясненном далее) функции сами являются неизвестными, что, в свою очередь, усложняет выполнение каких-либо условий согласования вблизи угловой точки. Поэтому в проводимом исследовании предпочтение отдано однородным методам моделирования, позволяющим вести расчет во всей области по однотипным разностным уравнениям без специального выделения особенностей.

Области с негладкой границей раздела сред часто встречаются при исследовании импульсных электродинамических ускорителей типа рельсотрон [1]. По направляющим рельсотрона (рельсам) протекает электрический ток, который замыкает цепь источника тока через подвижную проводящую перемычку — якорь (рис. 1). Созданное током рельсов магнитное поле взаимодействует с током в якоре и порождает силу Лоренца, толкающую якорь вдоль рельсов. В результате происходит ускорение якоря.

Цель настоящей работы — построение эффективных алгоритмов численного моделирования электромагнитных явлений и процессов в областях с негладкими границами проводящих и диэлектрических подобластей.

Преобразование математической модели путем изменения калибровочных соотношений. Для описания электромагнитных полей будем использовать так называемое квазистационарное или МГД- приближение [1] уравнений Максвелла

$$\operatorname{rot} \mathbf{H} = 4\pi \, \sigma \, \mathbf{E};$$

$$\operatorname{rot} \mathbf{E} - \operatorname{rot}[\mathbf{u}, \mathbf{H}] = -\frac{\partial \mathbf{H}}{\partial t};$$

$$\operatorname{div} \mathbf{H} = 0;$$

$$\mathbf{j} = \sigma \, \mathbf{E}.$$

(1)

Здесь и далее **E** и **H** — векторы напряженности соответственно электрического и магнитного полей; **j** — вектор плотности тока; σ — электропроводность; **u** — вектор скорости движения вещества; **r**(*x*, *y*, *z*) радиус-вектор; *t* — время. Система уравнений (1) записана в безразмерном виде. Входящая в нее величина **E** — напряженность электрического поля в связанной с веществом системе координат. Обозначим **E*** напряженность электрического поля в неподвижной (лабораторной) системе координат. В данной работе величины даются в безразмерном виде (в частности, в системе (1) **H** = **B**, где **B** — вектор магнитной индукции).

В дальнейшем используется постановка задачи [1] для определения электромагнитных полей внутри области после введения векторного потенциала A (H = rotA).

Согласно работам [1, 12] при расчете рассматривается не весь трехмерный ускоритель, а лишь его часть, приходящаяся на область, жестко связанную с якорем и движущуюся вместе с ним. Длина этой области (в направлении оси y) составляет несколько калибров ускорителя в обе стороны от якоря (см. рис. 1). В силу геометрической симметрии достаточно найти решение задачи в верхней половине расчетной области — в двумерном случае или в ее правой верхней четверти в трехмерном случае. Единственной заданной извне электромагнитной величиной можно считать полный ток, в основном определяемый источником питания. В рассматриваемом случае ненулевое граничное значение \mathbf{H}_{τ} задано только на одном торце расчетной области (y = 0).

Обозначим $G = G_1 \cup G_2$, G — рассматриваемая область, $G_1 = \{\mathbf{r} \in G: \sigma > 0\}$ — проводящая подобласть, $G_2 = \{\mathbf{r} \in G: \sigma = 0\}$ — диэлектрическая подобласть, ∂G_1 и ∂G_2 — границы G_1 и G_2 соответственно, $\partial G_{12} = \partial G_1 \cap \partial G_2$; Γ_1 — часть общей границы ∂G , на которой задано условие для \mathbf{E}^*_{τ} (т.е. для \mathbf{A}_{τ}); Γ_2 — часть ∂G , на которой задано условие для \mathbf{H}_{τ} ; $\partial G = \Gamma_1 \cup \Gamma_2$; $\Gamma_{12} = \Gamma_1 \cap \partial G_2$; $\gamma_{12} = \partial G_{12} \cup \Gamma_{12}$. При моделировании будут использоваться смешанные эйлерово-лагранжевы (СЭЛ) переменные: $D/Dt = \partial/\partial t + (\mathbf{v}, \nabla)$, где $\partial/\partial t$ — производная при фиксированных эйлеровых переменных, D/Dt — при фиксированных СЭЛ переменных (в нашем случае \mathbf{v} — скорость движения якоря как целого, независящая от координат пространственной точки). Индекс n указывает на нормальную по отношению к границе составляющую вектора, τ — на тангенциальную.

В СЭЛ переменных в соответствии с [1, 11], поскольку v не зависит от координат, справедливо соотношение

$$\mathbf{E} = -D\mathbf{A}/Dt + (\mathbf{v}, \nabla)\mathbf{A} + [\mathbf{u}, \operatorname{rot}\mathbf{A}] + \operatorname{grad}\phi = -D\mathbf{A}/Dt + \operatorname{grad}(\mathbf{v}, \mathbf{A}) + [\mathbf{w}, \operatorname{rot}\mathbf{A}] + \operatorname{grad}\phi.$$
(2)

Здесь w = u - v — вектор относительной скорости вещества по отношению к движущейся со скоростью **v** области.

Для получения единственного решения в диэлектрической подобласти в работе [1] предполагается $\phi = 0$ в G_2 , div $\mathbf{A} = 0$ в G_2 , $A_n = 0$ на Γ_{22} .

Для двумерного случая в декартовых координатах поля́ имеют вид $\mathbf{E} = (E_x, E_y, 0), \mathbf{H} = (0, 0, H_z)$ [1].

В исследуемых в данной работе задачах распределение каждой декартовой составляющей векторного потенциала в диэлектрических подобластях описывается уравнением Лапласа. Граничные условия для его решения в G_2 определяются значениями тангенциальных составляющих векторного потенциала на границе раздела проводящей и диэлектрической подобластей и условием равенства нулю дивергенции решения на границе (в пределе, изнутри G_2). Для эллиптической части квазистационарного приближения системы уравнений Максвелла граничными условиями второго рода являются значения производной решения по нормали к границе раздела сред, а для параболической — тангенциальные компоненты ротора векторного потенциала. Граничными условиями первого рода для параболической и эллиптической частей являются значения тангенциальных компонент **А** на границе раздела сред.

При выборе кулоновской калибровки $\phi = 0$ векторный потенциал A есть решение следующей задачи:

$$4\pi\sigma\left\{ \begin{bmatrix} \mathbf{u}, \operatorname{rot}\mathbf{A} \end{bmatrix} - \frac{D\mathbf{A}}{Dt} + (\mathbf{v}, \nabla) \mathbf{A} \right\} =$$

= rot rot $\mathbf{A} - \theta(\sigma)$ grad div \mathbf{A} ;
 $\mathbf{A}|_{t=0,\mathbf{r}\in G_1} = 0$; (3)
(rot $\mathbf{A})_{\tau}|_{\mathbf{r}\in\Gamma_2} = \Psi_{\tau}(\mathbf{r}, t), \quad \mathbf{A}_{\tau}|_{\mathbf{r}\in\Gamma_1} = 0$;
div $\mathbf{A}|_{\mathbf{r}\in\gamma_{12}} = 0, \quad A_n|_{\mathbf{r}\in\Gamma_{22}} = 0.$

Здесь учтена неоднородность задачи по пространству: $\theta(\sigma) = 0$ в G_1 и $\theta(\sigma) = 1$ в G_2 ; Ψ_{τ} — известная вектор-функция.

Напряженность магнитного поля не изменится (см., например, [11]), если в уравнении (2) вместо нулевого взять любое согласующееся с граничными условиями для Е значение ϕ . При $\phi = -(\mathbf{v}, \mathbf{A}) = -vA_y$ (в данной задаче) конвективные слагаемые в двумерном случае будут входить только в уравнения для A_x в рельсе. Для векторного потенциала поставим аналогичные (3) граничные условия.

Тогда поля описываются уравнением

$$4\pi\sigma \left(-D\mathbf{A}/Dt + [\mathbf{w}, \operatorname{rot}\mathbf{A}]\right) = \operatorname{rot}\operatorname{rot}\mathbf{A} - \theta(\sigma)\operatorname{grad}\operatorname{div}\mathbf{A}$$
(4)

(здесь w = u - v, w = 0 в движущейся части – якоре).

Легко видеть, что в этом случае дивергенция решения (при $\sigma = \text{const}$) с учетом начальных условий в якоре обнуляется.

Результаты численного моделирования для двумерной задачи и преобразование разностных соотношений. В этом случае область состоит из проводников (якорь, рельс) и диэлектриков (области впереди и позади якоря).

Схема модельной пространственной области, использованной в расчетах, приведена на рис. 1; якорь движется в положительном направлении оси *y*.

Для построения разностных схем в области вводится пространственная сетка. Дискретный аналог векторного потенциала относится к ребрам ячеек сетки (в нашем случае к центрам ребер), напряженность магнитного поля — к их граням. Подробности математической модели и вычислительного алгоритма приведены в работах [1, 12]. Разностные схемы записываются для безразмерных величин.

Задача решается на разностных сетках с различным числом ячеек в диэлектрической подобласти: 1) $N_x = 10 + 10$, $N_y = 10 + 10 + 10$; 2) $N_x = 20 + 10$, $N_y = 20 + 10 + 10$; 3) $N_x = 40 + 10$, $N_y = 40 + 10 + 10$. Здесь N_x — сумма числа ячеек вдоль оси x в подобластях диэлектрика и рельса, N_y — сумма числа ячеек вдоль оси y в подобластях диэлектрика и перед якорем, якоря и диэлектрика — после якоря.

При переходе с одного временного слоя на другой используются внешние и внутренние итерации (подробнее они описаны дальше). Для решения системы линейных алгебраических уравнений на внутренних итерациях используется метод сопряженных градиентов совместно с неполным разложением Холесского [13–15].

В работе [1] отмечалось отсутствие гладкости составляющей векторного потенциала A_y в диэлектрике при наличии движения в системе. Для исследования влияния на точность решения особенности, вызванной наличием именно конвективных слагаемых, будем исследовать процессы с постоянной электропроводностью в проводящей подобласти. Начальная скорость и другие параметры (входной (полный)

Рис. 2. Решение для случая калибровки $\phi = 0; t = 0, 395,$ сетка 3

ток $I(t) = I_{\max}t/t_0 \exp(1 - t/t_0)$, параметры в критериях прекращения итераций, сетка и т.д.) для всех расчетов (с различной калибровкой) берутся одинаковыми.

На рис. 2, *а* представлено решение для случая калибровки $\phi = 0$, а на рис. 2, δ — решение с измененной калибровкой $\phi = -(\mathbf{v}, \mathbf{A})$ на тот же момент времени. Вдоль осей для наглядности расположены номера ячеек (координаты диэлектрической подобласти, в которой исследуются особенности решения для сетки 3: по оси *x* 0–50, по оси *y* 0–50).

При изменении калибровки в угловой точке возникает экстремум решения (см. рис. 2, б). Причиной появления экстремума в рассматриваемом случае может являться выбранный способ разностной аппроксимации дифференциальных операторов.

Аппроксимация векторного произведения [w,H] в [1] представляет собой форму, переводящую векторные сеточные функции, задаваемые своими компонентами на гранях ячеек, и векторные сеточные функции, относящиеся к вершинам, в векторные сеточные функции, задаваемые своими компонентами на ребрах ячеек. Для лучшей аппроксимации такая форма должна включать в себя полусумму составляющих вектора **H** по граням, прилегающим к ребру, но это приводит к немонотонности решения [1].

Для обеспечения монотонности решения произведение [**w**,**H**] в [1] берется в виде

$$[\mathbf{w}, \mathbf{H}]_{3,x} = 1/\eta_{x,i} (h_{x,i+1,i} w_{i+1,j} + h_{x,i,i} w_{i,j}) H_{z,ij}$$
(5)

(здесь $\eta_{x,i}$ — длина ребра сетки, $h_{x,i,i}$ — расстояние от центра ребра до вершины). В этом случае при калибровке $\phi = -(\mathbf{v}, \mathbf{A})$ конвективное слагаемое будет входить в уравнение для A_x в якоре вблизи угловой точки, что нарушает однотипность уравнений вдоль границы раздела

и может служить причиной невозможности выполнения условий сопряжения [2] граничных условий в углах области (для принадлежности решения уравнения Лапласа к классу гладких функций $\mathbf{C}^{k,\lambda}$). Для обеспечения однотипности векторное произведение выбрано в виде

$$[\mathbf{w}, \mathbf{H}]_{3,x} = w_{i,j} H_{z,ij}.$$
(6)

Рис. 3. Решение для случая калибров-Если векторное произведение ки $\phi = -(v, A), t = 0, 395$, сетка 3 взять в форме (6), то экстремум решения вблизи угловой точки устраняется для случая калибровки $\phi = -(v, A)$ (рис. 3).

Для случая калибровки $\phi = 0$ и векторного произведения в форме (6) вид и расположение особенности не изменяются по сравнению с рис. 2, *a*.

Сравнение числа итераций для различных способов моделирования в двумерном случае. Для решения задачи (3) при переходе с одного временного слоя на другой используются внешние и внутренние итерации [1]. На каждой внешней итерации методом сопряженных градиентов [13–15] решается система линейных алгебраических уравнений с симметричной матрицей. При этом внедиагональные слагаемые, связанные с конвективным переносом, берутся с предыдущей внешней итерации и записываются в правую часть системы.

На рис. 4–5 приведена зависимость суммарного числа итераций (внешних и внутренних) от времени для двух расчетов на сетке 1: соответственно с $\phi = 0$ и $\phi = -(\mathbf{v}, \mathbf{A})$.

В связи с резким изменением магнитного поля при переходе через границу между проводником и диэлектриком разностная схема для модели с калибровкой $\phi = -(\mathbf{v}, \mathbf{A})$ лучше аппроксимирует решение на границе якоря, чем для модели с калибровкой $\phi = 0$.

Если заданная точность не достигнута за определенное число итераций, шаг по времени приходится уменьшать [1]. Условия прекращения итерационного процесса, как правило, выполняются при малом шаге. Преобразование математической модели делает возможным достижение необходимой точности с большим шагом по времени. Приведем сравнение числа шагов по времени, сделанных к моменту времени t, для различных способов моделирования (табл. 1).

Сравнение числа итераций для различных способов моделирования в трехмерном случае. Рассмотрим два простейших варианта конфигурации (упрощение конфигурации [12]) в трехмерном случае: вариант 1 показан на рис. 6, *а* и вариант 2 — на рис. 6, *б*. Сечение

Рис. 4. Суммарное число итераций, калибровка $\phi = 0$

Рис. 5. Суммарное число итераций, калибровка $\phi = -(v, A)$

Таблица 1

№ сетки	Момент времени	Число шагов по времени с калибровкой $\phi = 0$	Число шагов по времени с калибровкой $\phi = -(\mathbf{v}, \mathbf{A})$
1	t = 0,755	705	25
2	t = 0,524	570	22
3	t = 0,432	415	35, 18 (с векторным произведением в форме (6))
3 (повышен- ная точ- ность)	t = 0,428	681	97

области плоскостью z = 0 в обоих случаях совпадает с сечением, представленным на рис. 1.

Задача решалась на разностных сетках соответственно 1 ($N_x = 5 + 5 + 5, N_y = 5 + 5 + 5, N_z = 5 + 5$) и 2 ($N_x = 5 + 5 + 5, N_y = 5 + 5 + 4, N_z = 5 + 5 + 4$). Полученное число шагов по времени, сделанных к мо-

Рис. 6. Варианты конфигурации 1 (а) и 2 (б)

менту времени *t*, для различных способов моделирования приведено в табл. 2. Таблица 2

№ сетки	Момент времени	Число шагов по времени с калибровкой $\phi = 0$	Число шагов по времени с калибровкой $\phi = -(\mathbf{v}, \mathbf{A})$
1	t = 0,500	243	77
2	t = 0,650	236	89

В двух- и трехмерном случаях суммарное число итераций, необходимых для получения решения, существенно сокращается при изменении модели — это позволяет вести расчет с большим шагом по времени и получать разностное решение на каждом временном слое за меньшее число итераций.

Явное выделение особенности. Рассмотрим задачу в двумерном приближении. Схема модельной пространственной области, использованной в расчетах (в простейшем двумерном случае), представлена на рис. 1. Интерес представляет поведение решения в диэлектрической подобласти перед якорем (в форме прямоугольника).

В работе [2] исследованы условия, при выполнении которых решение уравнения Лапласа в области с угловой точкой и граничными условиями различных типов принадлежит к классу функций с непрерывной *k*-й производной $\mathbf{C}^{k,\lambda}$, показана возможность выделения сингулярной части решения в явном виде. Рассмотрим условия принадлежности решения к классу $\mathbf{C}^{2,\lambda}$ (k = 2).

Для удобства за начало отсчета в системе, которая понадобится для записи слагаемых, явно выделяющих особенность решения, примем угловую точку границы проводника (оси в новой системе координат обозначим *y**, *x**).

Решение представим в виде суммы негладкой (выделяющей особенность и обозначенной через A_0) и гладкой (A^*) частей, т.е. $A = A_0 + A^*$.

Составляющие А₀ имеют следующий вид:

$$A_{0x} = 2/\pi \kappa \operatorname{Im}(z \ln z) = 2/\pi \kappa (y^* \ln \rho + x^* \operatorname{arctg}(y^*/x^*));$$

$$A_{0y} = 2/\pi \kappa \operatorname{Re}(z \ln z) = 2/\pi \kappa (x^* \ln \rho - y^* \operatorname{arctg}(y^*/x^*)).$$
(7)

Здесь $\rho^2 = x^{*2} + y^{*2}$; $\kappa = \frac{\partial A_x}{\partial x} \Big|_{y^*=0} + \frac{\partial A_y}{\partial y} \Big|_{x^*=0}$ — разность значений производной в точке *O* по внутренней нормали к грани $y^* = 0$ и производной по дуге *s* (*s* — выбранное направление обхода) — тангенциального условия на грани $x^* = 0$ (с учетом равенства нулю дивергенции решения при стремлении изнутри к границе диэлектрика).

Рис. 7. Среднее число внутренних итераций без явного (*a*) выделения особенности и с явным (б) выделением, сетка 3

При таком задании A_0 выполняются требования: div $A_0 = 0$ и rot $A_0 = 0$ в диэлектрической подобласти.

На внешних итерациях для вычисления А* строится система $MA^* = f - MA_0$. Здесь M — матрица, аппроксимирующая на разностной сетке симметричную часть оператора системы уравнений Максвелла; f — правая часть системы, к которой на внутренних итерациях относятся конвективные слагаемые. После получения А* вычисляется $A = A^* + A_0$. Такое изменение правой части системы помогает стабилизировать среднее число итераций, необходимых для решения системы методом сопряженных градиентов. После добавления к правой части системы слагаемого $(-MA_0)$ и добавления к A^* слагаемого А₀ суммарная погрешность в вычислении вектора А увеличивается. Для улучшения сходимости внешних итераций достаточно повысить точность в критериях прекращения внутренних итераций. Среднее число итераций, необходимых для решения системы методом сопряженных градиентов для сетки 3 с повышенной точностью в критериях прекращения внутренних итераций, представлено на рис. 7. На рис. 8 приведена зависимость параметра к от времени, а на рис. 9 – вид решения А* для сетки 3.

Некоторые дополнительные подробности выполненной работы приведены в [16].

Выводы. Исследовано влияние калибровки математической модели и разностных эффектов (формы разностных операторов) на появление экстремумов, отражающих особенность решения. Модель с измененной калибровкой позволяет увеличить шаг по времени, необходимый для выполнения условий сходимости итераций с учетом конвективных слагаемых. При изменении формы разностных операторов устраняются экстремумы, обусловленные особенностью решения вблизи угловой точки. После проведения преобразований модель

Рис. 8. Зависимость параметра к от времени *t* = 0, 150, сетка 3

Рис. 9. Вид решения А* для сетки 3

остается однородной по пространству. Явное выделение особенности решения позволяет стабилизировать число внутренних итераций, но не изменяет способа учета конвективных слагаемых при решении системы линейных алгебраических уравнений и вследствие этого не может существенно увеличить шаг по времени, необходимый для сходимости внешних итераций.

СПИСОК ЛИТЕРАТУРЫ

- 1. Галанин М. П., Попов Ю. П. Квазистационарные электромагнитные поля в неоднородных средах: Математическое моделирование. М.: Физматлит, 1995. 320 с.
- 2. В о л к о в Е. А. О дифференциальных свойствах решений краевых задач для уравнений Лапласа и Пуассона в прямоугольнике // Тр. МИАН СССР. 1965. Т. 77. С. 89–112.
- 3. В о л к о в Е. А. Об устранении особенностей при решении краевых задач для уравнения Лапласа в областях с гладкой границей // ЖВМ и МФ. – 1963. – Т. 3. – № 1. – С. 109–119.
- Кондратьев В. А. Краевые задачи для эллиптических уравнений в областях с коническими или угловыми точками // Тр. Моск. мат. о-ва. 1967. Т. 16. С. 209–292.
- 5. Кондратьев В. А., Копачек И., Олейник О. А. О поведении обобщенных решений эллиптических уравнений второго порядка и системы теории упругости в окрестности граничной точки // Тр. сем. им. И.Г. Петровского. – 1982. – Т. 8. – С. 135–152.
- 6. Фрязинов И.В. Разностные схемы для уравнений Лапласа в ступенчатых областях // ЖВМ и МФ. 1978. Т. 18, № 5. С. 1170–1185.
- 7. Ф и к е р а Г. Асимптотическое поведение электрического поля и плотности электрического заряда в окрестности сингулярных точек проводящей поверхности // Успехи мат. наук. 1975. Т. 30, вып. 3(183). С. 105–124.
- Борсук М. Вырождающиеся эллиптические краевые задачи второго порядка в негладких областях // Современная математика. Фундаментальные направления. – 2005. – Т. 13. – С. 3–137.

- 9. В о л к о в Е.А. Метод составных сеток для конечных и бесконечных областей с кусочно-гладкой границей // Тр. МИАН СССР. 1968. Т. 96. С. 117–148.
- 10. В о л к о в Е. А. О методе регулярных составных сеток для уравнения Лапласа на многоугольниках // Тр. МИАН СССР. 1976. Т. 140. С. 68–102.
- 11. Т а м м И. Е. Основы теории электричества. М.: Наука. 1976. 616 с.
- 12. Галанин М. П., Лотоцкий А. П., Уразов С. С. Моделирование эрозии металлического контакта в ускорителе типа рельсотрон // Вестник МГТУ им. Н.Э. Баумана. Сер. "Естественные науки". 2004. № 4(15). С. 81–97.
- 13. Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М.: Наука, 1978. 592 с.
- K e r s h a w D. S.. The incomplete Cholessky Conjugate gradient method for the iterative solution of system of linear equations // J. Comput. Phys, 1978. – Vol. 26. – P. 43–65.
- 15. Д ж о р д ж А., Д ж. Л ю. Численное решение больших разреженных систем уравнений. М.: Мир, 1984. 333 с.
- 16. Галанин М. П., Уразов С. С. Методы численного моделирования квазистационарных электромагнитных полей в областях с негладкими границами проводящих и диэлектрических подобластей // Препр. ИПМ им. М.В. Келдыша РАН. – 2006. – № 83. – 27 с.

Статья поступила в редакцию 26.03.2007

ЖУРНАЛ "ВЕСТНИК МОСКОВСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА имени Н.Э. БАУМАНА"

В журнале публикуются наиболее значимые результаты фундаментальных и прикладных исследований и совместных разработок, выполненных в МГТУ им. Н.Э. Баумана и других научных и промышленных организациях.

Журнал "Вестник МГТУ им. Н.Э. Баумана" в соответствии с постановлением Высшей аттестационной комиссии Федерального агентства по образованию Российской Федерации включен в перечень периодических и научнотехнических изданий, в которых рекомендуется публикация основных результатов диссертаций на соискание ученой степени доктора наук.

Главный редактор журнала "Вестник МГТУ им. Н.Э. Баумана" — ректор МГТУ им. Н.Э. Баумана, чл.-кор. РАН, д-р техн. наук, профессор И.Б. Федоров.

Журнал издается в трех сериях: "Приборостроение", "Машиностроение", "Естественные науки" с периодичностью 12 номеров в год.

В серии "Естественные науки" (главный редактор серии — д-р физ.-мат. наук, профессор А.Н. Морозов) значительное внимание уделяется работам в области математики, теоретической и экспериментальной физики, химии, теоретической механики.

Подписку на журнал "Вестник МГТУ им. Н.Э. Баумана" можно оформить через агентство "Роспечать".

Подписка по каталогу "Газеты, журналы" агентства "Роспечать"

Индекс	Наименование серии	Объем выпуска	Подписная цена (руб.)	
		Полугодие	3 мес.	6 мес.
72781	"Машиностроение"	2	250	500
72783	"Приборостроение"	2	250	500
79982	"Естественные науки"	2	250	500

Адрес редакции журнала "Вестник МГТУ им. Н.Э. Баумана":

105005, Москва, 2-я Бауманская ул., д. 5.

Тел.: (495) 263-62-60; 263-60-45. Факс: (495) 261-45-97. E-mail: press@bmstu.ru