УДК 533.93

Ю. Ю. Протасов, Т. С. Щепанюк

О ФАЗОВЫХ ПЕРЕХОДАХ В ПОЛЕ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ УМЕРЕННОЙ ИНТЕНСИВНОСТИ В ВАКУУМНЫХ УСЛОВИЯХ

Приведены результаты исследования теплофизических и газодинамических процессов взаимодействия (в квазиодномерной постановке) лазерного излучения плотностью мощности $10^6 \dots 10^8$ Bm/cm² ($\lambda \approx 1,06$ мкм, $\lambda \approx 0,69$ мкм, $\tau = 10^{-4} \dots 10^{-8}$ с) с пространственно ограниченными мишенями (легкоплавкие металлы и диэлектрики полимерного ряда), необходимые для анализа макроструктуры зоны взаимодействия и динамики фазовых переходов. При интенсивностях лазерного излучения, меньших порогов оптического пробоя, экспериментально определены условия перехода волны развитого испарения в волну термической ионизации для гомогенных газовых потоков и потоков с конденсированной фазой.

Исследования лазерно стимулированных процессов фазовых переходов и их динамики представляют помимо общефизического и большой практический интерес. Это связано с разработками устройств и систем плазменных и фотонных технологий и фотонной энергетики высокой плотности мощности (конверторов энергии лазерного излучения в кинетическую и электрическую, систем активной теплозащиты летательных аппаратов и т.п.) [1–3].

Фазовые переходы жидкость-пар во фронте дозвуковой волны испарения. Известно [4, 5], что фазовый переход конденсированного вещества в пар является одним из возможных механизмов разрушения материалов мощным оптическим излучением, поглощение энергии которого приводит к разогреву поверхностного слоя мишени в зоне облучения до температуры в несколько тысяч градусов. В результате развивается интенсивное испарение вещества мишени, фронт испарения (граница раздела фаз) движется внутрь мишени вдоль лазерного луча; его установившееся одномерное движение рассматривают как волну испарения. Скорость движения фронта волны по холодному веществу и совпадает со скоростью волны в лабораторной системе координат (v = u). Волна испарения приводит к разрушению материала в зоне облучения и образованию характерного кратера в мишени, а инжекция паров навстречу излучению создает реактивное давление отдачи на мишень. Давление отдачи, развитие кратера и вынос массы вещества определены экспериментально. Основные энергобалансоые соотношения можно оценить следующим образом [6]. Режим волны испарения возникает при значениях интенсивности излучения (I_0) , когда теплопроводность не успевает отводить поглощенную на поверхности мишени энергию во внутренние слои и вся поглощенная энергия тратится на процесс развитого испарения и вынос материала. Уравнение баланса энергии имеет вид

$$I_0\left(1 - R(\lambda)\right) = j_0 \Delta_{\text{nap}},\tag{1}$$

где I_0 — интенсивность падающего излучения; $R(\lambda)$ — коэффициент отражения излучения на фронте волны испарения; $\Delta_{\text{пар}}$ — характерная теплота испарения; $j_0 = nu = n_0v_0$ — плотность потока вещества на фронте волны испарения; n, n_0 и u, v_0 — плотность частиц и скорость вещества в конденсированной и газовой фазах соответственно перед и за фронтом волны. Если температура T перехода жидкость-пар во фронте волны ниже критической температуры $T_{\text{кр}}$ фазового перехода, то имеют место неравенства $n > n_0$ и $u < v_0$. Одномерный характер волны испарения и длительность воздействия импульса лазерного излучения t, необходимая для установления ее квазистационарного движения, определяются неравенствами

$$d > ut > (\chi t)^{1/2}$$
, (2)

где d — поперечный размер зоны облучения мишени; h = ut — глубина кратера разрушения; χ — температуропроводность материала мишени. Соотношение (1) также предполагает поверхностный характер поглощения лазерного излучения в материале мишени, т.е.

$$(\chi/u) > \alpha^{-1},\tag{3}$$

что выполняется для металлических мишеней при $T > T_{\rm kp}$ и непрозрачных диэлектрических, например на основе углерода (α — коэффициент поглощения, см⁻¹). Следует заметить, что даже в оптически прозрачных материалах (оптических стеклах) при росте интенсивности I_0 лазерного излучения поглощение становится поверхностным из-за начинающегося процесса термической ионизации. Так, разрушение оптического стекла К-8 при $I_0 \approx 10^8 \, {\rm Br/cm}^2$ из-за ионизации входящих в стекло атомов щелочных элементов носит поверхностный характер и аналогично процессу образования кратера на металлических мишенях при интенсивных потоках излучения.

Соотношение (1) совместно с (2) и (3) позволяет найти величины j_0 , u и оценить глубину кратера h и вынос массы пара $\Delta m = j_0 St$. Для определения давления отдачи паров на мишень необходимо знать температуру T на границе жидкость–пар. Если давление пара у мишени (на расстоянии $x \leq d$) превышает давление окружающего газа, то испарение можно считать квазивакуумным и

$$j_0 = n_s \left(T \right) v_x \left(T \right), \tag{4}$$

где скорость $v_x = (T/2\pi M)^{1/2}$ (M — масса частиц пара), а плотность насыщенного пара n_s связана с температурой экспоненциальной зависимостью $n_s(T) \approx \exp(-\Delta_{\text{пар}}/T)$. Анализ уравнений (1) и (4) показывает, что T и I связаны логарифмической зависимостью

$$\Delta_{\rm nap}/T \approx \ln(I_0^*/I_0); \tag{5}$$

здесь I_0^* — функция T (имеющая размерность I_0). Температура фазового перехода жидкость-пар лежит в относительно узком интервале значений $T_{\text{кип}} \sim T < T_{\text{кр}}$, где $T_{\text{кр}}/T \leq 2...3$ ($T_{\text{кип}}$ — температура кипения при нормальном давлении), и с учетом (5) ее можно считать приблизительно постоянной (типичное для металлов значение $\Delta_{\text{пар}}/T_{\text{кип}} \approx 10...12$) [7]. Согласно соотношениям (1) и (5), плотность паров n_0 растет с увеличением I_0 , а их скорость слабо зависит от интенсивности излучения:

$$n_0 \sim j_0 \sim I_0(1 - R(\lambda)), \quad v_0(t) \sim \text{ const}, \tag{6}$$

т.е. давление импульса отдачи на волне испарения $p_0 = p j_0 v_x$ так же, как и величина массового уноса, пропорционально $I_0(1 - R(\lambda))$, т.е. $(p_0/I_0) \sim \text{const.}$

Такое описание волны испарения — упрощенное (т.е. соотношение (4) не учитывает столкновений в испаренном веществе и обратного потока вещества на мишень). Область интенсивностей лазерного излучения, при которых может существовать волна развитого испарения, ограничена снизу условием (2), а сверху — окрестностью критической точки перехода жидкость-пар, вблизи которой скорость разлета конденсированной фазы u во фронте волны определяется температурой перехода и совпадает со скоростью пара v_0 :

$$n(\chi/t)^{1/2}\Delta_{\text{nap}} < I_0(1 - R(\lambda)) < n_{\text{kp}}v_x(T_{\text{kp}})\Delta_{\text{nap}}.$$
(7)

Из неравенства (7) следует, что при сокращении длительности импульса t область существования эффекта волны испарения по диапазону величины I_0 сужается: $I_0 \rightarrow I_{0 \max}$ при $t_u \rightarrow t_{u \min}$, причем $t_{u \min}$ должно удовлетворять условию ($\chi t_{u \min}$)^{1/2} > α^{-1} .

О выносе жидкости из мелкого кратера силой отдачи паров. Как показано в работе [8], рассмотрение волны лазерного испарения на основе фазового перехода жидкость-пар (вместо известных теорий с использованием фазового перехода твердое тело-пар) является существенным при анализе механизмов формирования на плоской мишени кратера в условиях выполнения соотношений (1)-(3) одномерного поверхностного испарения мишени. Вымывание жидкой фазы из мелкого кратера (условие (2)) происходит под действием направленного вдоль поверхности мишени градиента давления паров; этот процесс может давать основной вклад в формирование глубины мелкого кратера по сравнению с процессом выброса массы вещества в виде пара при умеренных интенсивностях излучения при продолжительных временах воздействия t_u и небольших размерах зоны облучения d. Если пренебречь затратами энергии на плавление, нагрев материала мишени и вынос жидкости по сравнению с затратами на испарение (эти потери в расчете на атом не менее чем на порядок ниже теплоты испарения), то полученные в работе [8] соотношения верны для получения численных оценок и в случае, когда масса вынесенной жидкости даже на порядок превышает массу выброшенного пара, и могут быть использованы для сравнительного анализа экспериментальных результатов.

Экспериментальные условия и результаты. Для выполнения условий плоского (одномерного) испарения d > h (т.е. с большим размером зоны облучения плоской мишени) эксперименты проводились с использованием твердотельных неодимового и рубинового лазеров с энергией $3 \cdot 10^3 \dots 3 \cdot 10^2$ Дж в импульсе длительностью $\approx 10^{-4} \dots 10^{-9}$ с и различной фокусировкой потока излучения. В вакуумных условиях ($p \approx 10^{-2}$ Па) импульс отдачи измерялся по отклонению баллистического маятника с укрепленной на нем мишенью; вынос массы вещества определялся взвешиванием мишени до и после облучения; глубина кратера контролировалась профилометрическми измерениями после облучения мишени. Интенсивность излучения на мишени изменялась величиной уровня энергии накачки лазеров и размером пятна облучения.

Экспериментальные зависимости импульса отдачи $J = p_0 S t_u$ и выноса массы $\Delta m \sim i_0 S t_u$, отнесенные к энергии лазерного излучения E, от среднего за импульс значения плотности потока мощности I_0 и зависимость глубины кратера, измеренной в его центре для различных веществ приведены на рис. 1, 2. Непосредственную информацию о процессе одномерного испарения мишени дают данные об импульсе отдачи (см. рис. 1), так как давление отдачи определяется главным образом за счет уноса вещества в газовой фазе. Для используемых материалов мишеней регистрируются характерные области зависимостей $J/E(I_0)$: относительно резкое нарастание давления отдачи с увеличением плотности потока лазерного излучения на мишени и последующее насыщение, когда удельный импульс отдачи J/E слабо зависит от интенсивности излучения I_0 . При $I_0 \sim (3 \dots 4) \cdot 10^5 \, {
m Br/cm^2}$ начинается и при $I_0 \sim (0, 6 \dots 2) \cdot 10^6 \, \mathrm{Bt/cm^2}$ активно происходит развитое испарение мишени; при $I_0 \approx (2...3) \cdot 10^6 \, \mathrm{Br/cm^2}$ на мишени образуется плазма, поглощение излучения которой при плотности мощности $I_0 > 3.10^6 \,\mathrm{Bt/cm^2}$ приводит к замедлению роста давления отдачи и снижению удельного механического импульса отдачи Ј/Е. Для материа-

Рис. 1. Зависимость удельного импульса от плотности мощности лазерного импульса для диэлектрической ($(C_2F_4)_n$) плоской мишени (l) и металлической (Ta) мишени (2)

Рис. 2. Масс-расходные характеристики аблирующих мишеней

лов мишеней с высоким порогом испарения образование светоэрозионной плазмы может происходить при интенсивностях, более низких, чем для установления развитого поверхностного испарения. Это проявляется в первую очередь в экспериментах с короткими (наносекундными) лазерными импульсами, так как порог испарения $I_{0 \text{пор}} \sim t_u^{1/2}$.

Данные по интегральному за импульс уносу массы (см. рис. 2) повторяют по форме характер кривых для импульсов давления, что свидетельствует о том, что давление отдачи определяет суммарный унос массы из зоны облучения, однако унесенная масса в несколько раз превышает массу выброшенного пара. Оценки показывают, что бо́льшую часть унесенной массы за время лазерного импульса составляет жидкая фаза даже при формировании достаточно мелкого кратера. Повидимому, значительный вклад в массу выносимой жидкой фазы дают передний и задний фронты длинного импульса излучения, когда плотность мощности излучения на мишени ниже среднего значения. Так как взвешивание мишени до и после облучения не дает корректных данных об уносе вещества в газовой фазе, более адекватными в этом отношении являются данные о глубине кратера.

Для полимерных мишеней выполнен цикл экспериментов, когда выбранная схема фоторегистрации и интерферометрии с большим увеличением позволила максимально приблизиться к поверхности воздействия и количественно оценивать динамику зоны испарения (рис. 3). При острой фокусировке излучения I_0 на мишени образуется кратер, увеличивающий во времени свои размеры в трех измерениях; его диаметр превышает размер пятна фокусировки, что подтверждает влияние на формирование кратера (помимо теплового испарения) вторичных объемных фото- и газодинамических процессов, когда большой телесный угол раскрытия испаряемого потока трансформируется в направленную струю. При увеличении $I_0 > I_0_{\text{ крит}}$ скорость пара $V_{\text{п}}$ может превосходить скорость звука v_0 , а его ускорение происходит в тонком приповерхностном слое мишени, определяемом экспериментально (см. рис. 3). В этом случае сверхзвуковой режим истечения пара связан с образованием ударно-волновой структуры в потоке и в ряде зон (в зависимости от химического состава мишени, гео-

Рис. 3. Максимальная глубина h кратера на алюминиевой мишени в зависимости от плотности мощности излучения с острой фокусировкой (1); зависимость удельного импульса отдачи $(CH_2)_n$ -мишени от плотности мощности излучения с острой фокусировкой (2), в режимах с К-фазой (3), развитого испарения (4)

метрии кратера, плотности вещества полимерной мишени) происходит ускорение пара при резком охлаждении — его конденсация в микрокапли (с $T_k \sim T_{\text{пов}}$). Результирующая скорость движения границ испарения \tilde{v}_0 (разность скоростей испарения и конденсации) за счет обратного столкновительного потока, определенная экспериментально, для (CH₂O)_n-мишеней составляет $\approx 0.8v_{\text{зв}}$.

В зависимости от параметров лазерного импульса (I_0, λ, E, t_u) и теплофизических характеристик мишени доля конденсированной фазы (К-фазы) в потоке пара может составить $n_k \approx 10...50\%$ (n_k также растет с увеличением величины $\lambda_{\rm T}(T_{\rm II} - T_{\rm II})$), уменьшая (из-за экранировки/рефракции излучения) количество тепла, поглощаемого мишенью, плотность пара у поверхности мищени и массовый расход. При достижении пороговых для плазмообразования плотностей мощности лазерного излучения $I_0 > I_0^{**}$ происходит оптический пробой пара, облегченный ($I_0^{**} \approx (2...3) \cdot 10^7 \, {\rm Bt/cm}^2$) поверхностью мишени за счет легкоионизуемых примесей в паре, и возникновение плазменного слоя, что существенно изменяет динамику генерации пара, ослабляя (плазменный слой отражает падающее лазерное излучение)

или усиливая (плазменный слой поглощает лазерное излучение и затем при рекомбинации плазмы передает его мишени с новым временным профилем) тепловой поток (интегральный по времени лазерного воздействия) к поверхности полимерной мишени в зависимости от спектрально-мощностных характеристик лазерного импульса.

Однако при одинаковых значениях энергии излучения E, выделяющейся у поверхности мишени, при высокой плотности мощности I_0 происходит большее уменьшение расхода массы m, чем при той же энергии E, но меньшей интенсивности более длинных импульсов.

Помимо отражения части излучения поверхностью, учитываемой коэффициентом отражения [9] $R(\lambda)$, прямые калориметрические измерения энергии, поглощаемой мишенью, позволяют определить эффективный коэффициент теплопередачи К_Т (отношение поглощенной энергии к энергии лазерного импульса Е) в зависимости от интенсивности І₀. При увеличении І₀ выше порога плазмообразования коэффициент К_Т для полимерных мишеней возрастает, затем монотонно уменьшается с ростом I₀, что связано с действием противоположных факторов, таких как экранировка мишени плазмой (уменьшается доля энергии лазерного излучения, достигающего мишени, что является определяющим для веществ с малым коэффициентом $R(\lambda)$) и поглощение излучения в плазме (ее нагрев приводит к передаче части поглощенной энергии благодаря конвективному теплообмену и интенсивному переизлучению плазмы в видимой и УФ-областях спектра). Уменьшение K_T при высоких значениях $I_0 \gg I_0^*$ связано с уменьшением доли переизлучаемой энергии и может регулироваться динамическими характеристиками газового потока и плазменной зоны.

Помимо "плазменного" поглощения излучения для полимерных мишеней имеет место ослабление теплового потока за счет поглощения в колебательно-вращательных молекулярных полосах, характерных для термодеструкции полимеров (в том числе резонансного). Вклад в ослабление излучения вносит и его экранировка продуктами абляции (в эрозионном факеле), что проявляется на фоторегистрограммах потока в виде пульсирующих характеристик испарения. Низкочастотный спектр колебаний обусловлен макроструктурой вещества, а высокочастотные пульсации определяются конкуренцией двух динамичных процессов — разлета паровой фазы и экранировки излучения; при этом возникновение эрозионного факела и изменение глубины кратера носят самосогласованный характер, что соответствует автоколебательному режиму испарения. Дополнительный вклад также вносят термоупругие напряжения из-за высоких температурных градиентов ($\approx 10^{6...7}$ K/см). При больших значениях I_0 давление от температурного расширения испаряемого слоя не успевает выравниваться:

возникает волна сжатия, распространяющаяся в объеме (термомеханическая ударная волна), напряжение растяжения возникает при отражении волны и при больших амплитудах наблюдается образование макроразрушений и отколов у свободной поверхности мишени.

Отметим, что исследование динамики процессов генерации и поддержания лазерно-индуцированного режима волны развитого испарения необходимы для определения условий оптимального подвода энергии низкопорогового лазерного излучения к мишеням для достижения регулируемого по заданному закону массового расхода рабочего вещества необходимой плотности и профиля скорости.

СПИСОК ЛИТЕРАТУРЫ

- 1. K o s s o w s k i i R., et al. Powerful lasers-science and engineering. –N–Y.: Kluwer Academic Publishers, 1996.
- 2. Радиационная плазмодинамика. Т. 1 / Под ред. Ю.С. Протасова. М.: Энергоатомиздат, 1991. С. 9–53.
- 3. Энциклопедия низкотемпературной плазмы. Вводный том. Т.2 / Под ред. В.Е. Фортова. М.: Наука, 2001. С. 125–305.
- 4. А фанасьев Ю.В., Крохин О.Н. // ЖЭТФ. 1967. Т. 52. С. 966–975.
- 5. Батанов В. А., Федоров В. Б. // Письма в ЖЭТФ. 1973. Т. 17. С. 348–351.
- 6. У л я к о в П. И. О светоиндуцированных фазовых переходах // ЖЭТФ. 1967. Т. 52. С. 820–831.
- 7. Федоров В.Б. Квазистационарные оптические разрялы. М.: Наука, 1988.
- 8. D a n i l u t c h e v V. A., Z v o r u k i n V. D. In Powerful Gas Lasers and Lasermatter interaction. – M.: Nauka 1983.
- 9. Protasov Y u. S., Protasov Y u. Y u., Telekh V. D. // VIII Int. conf. "Dielectric materials, measurements and applications": IEE Conf. Publication. Edinburgh. 2000. No. 473. P. 440–444.

Статья поступила в редакцию 15.02.2008

Юрий Юрьевич Протасов — д-р техн. наук, доцент кафедры "Газотурбинные и нетрадиционные установки" МГТУ им. Н.Э. Баумана. Автор более 100 научных работ в области фотонной энергетики.

Yu.Yu. Protasov — D.Sc. (Eng.), assoc. professor of "Gas-Turbine and Non-Traditional Facilities" department of the Bauman Moscow State Technical University. Author of over 100 publications in the field of photon power-engineering.

Тадеуш Сигизмундович Щепанюк — канд. техн. наук, ст. науч. сотрудник ФИРАН им. П.Н. Лебедева. Автор более 30 научных работ в области радиационной газоплазмодинамики.

T.S. Shchepanyuk – Ph. D. (Eng.), senior researcher of the Lebedev Physical Institute of RAS. Author of more than 30 publications in the field of radiation gas and plasma dynamics.