РЕНТГЕНОДИФРАКЦИОННЫЕ И ЭЛЕКТРОННО-МИКРОСКОПИЧЕСКИЕ ИССЛЕДОВАНИЯ МЕТАЛЛООКСИДНЫХ ПЛЕНОК ZnO<S>, ПОЛУЧЕННЫХ МЕТОДОМ УЛЬТРАЗВУКОВОГО СПРЕЙ-ПИРОЛИЗА

С.З. Зайнабидинов¹ Ш.У. Юлдашев² А.Й. Бобоев¹ Н.Ю. Юнусалиев¹

78

prof_sirojiddin@mail.ru prof_yuldashev@mail.ru aboboevscp@gmail.com nyunusaliyev1997@gmail.com

¹АндГУ, Андижан, Республика Узбекистан ²НУУз, Ташкент, Республика Узбекистан

Аннотация Получены образцы тонких пленок ZnO<S> толщиной примерно 400 нм, напыленных на кремниевую подложку методом ультразвукового спрей-пиролиза. Пленки имеют кристаллографическую ориентацию (001) со значениями параметров решетки

a = *b* = 0,3265 нм и *c* = 0,5212 нм. Нанокристаллиты ZnO_{1-x}S_x на поверхности пленки имеют характерные размеры в пределах 50...200 нм. Экспериментально определен параметр решетки нанокристаллитов: 0,7598 нм. Установлено уменьшение параметров решетки пленки ZnO и геометрических размеров нанокристаллитов на поверхности пленки под влиянием ү-облучения. Определено, что кристаллическое строение нанокристаллитов соответствует кубической решетке и принадлежит пространственной группе F43m с параметром решетки 0,7692 нм. По данным сканирующей электронной микроскопии, диаметр нанокристаллитов составляет 50...200 нм, нанокристаллиты растут перпендикулярно к подложке вдоль оси z с кристаллографической ориентацией (111). Установлено, что влияние γ-облучения дозой 5 · 10⁶ рад позволяет уменьшить размеры нанокристаллитов и приводит к изменению их плотности и геометрической формы

Ключевые слова

Кремний, металлооксид, кристаллографическая ориентация, параметр решетки, геометрическая форма, нанокристаллит, ү-облучение

Поступила 10.02.2023 Принята 19.05.2023 © Автор(ы), 2024

Работа выполнена при поддержке Министерства инновационного развития Республики Узбекистан (грант № FZ-292154210)

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2024. № 1

Введение. Металлооксидные слои ZnO являются полупроводниками с шириной запрещенной зоны 3,3 эВ, в основном имеют *n*-тип проводимости вследствие дефицита кислорода [1]. В настоящее время наиболее перспективными являются синтез и легирование оксида цинка в существенно неравновесных условиях; отжиг под пленкой вещества с неадекватной растворимостью компонентов соединений; отжиг кристаллов в атмосфере атомарного халькогена [2, 3]. Так, в процессе пиролиза сверхтонких пленок растворов нитратов и/или ацетатов цинка на поверхности подложки возникают существенно неравновесные термодинамические условия, приводящие к образованию атомарного кислорода и серы, групп O–S, Zn–O–S и т. п., формирующих растущую пленку [4]. С использованием подложек с различной растворимостью (или коэффициентами диффузии) атомов Zn, O и S в процессе постростового отжига можно управлять относительными скоростями «залечивания» различных дефектов. Кроме того, установлено, что легирование [5] и у-облучение [6] металлооксидных слоев приводят к уменьшению размеров зерен кристаллитов и к улучшению функциональных свойств наноструктурированных пленок.

Цель работы — получение данных о структуре и фазовом составе металлооксидных пленок ZnO<S> методами рентгенодифракционных и электронно-микроскопических исследований и определение влияния γ-облучения на их структурные параметры.

Методика эксперимента. Для нанесения металлооксидных пленок ZnO, легированных серой на кремниевых подложках, использован метод ультразвукового спрей-пиролиза по технологии, описанной в [4]. В качестве прекурсоров для получения пленок ZnO применены водные растворы ацетата цинка [7, 8]. Для проведения легирования в водные растворы ацетата цинка добавляли в необходимой концентрации легирующие элементы — тиомочевину или ацетат аммония — для получения *p*-типа проводимости [9–11]. В результате ультразвукового воздействия на эти растворы происходил переход жидкости в пар без ее существенного нагрева [12]. Образованный в результате воздействия ультразвука пар осаждался на подложку.

Подложка нагревалась до температуры, достаточной для термического разложения прекурсоров, на ее поверхности происходило осаждение атомов с образованием пленки ZnO<S>. Химические реакции, протекающие при синтезе этих пленок, можно представить как [10]:

$$n(CH_{3}COO)_{2} + 2H_{2}O + CH_{4}N_{2}S \rightarrow$$
$$\rightarrow ZnO(S) + 2NH_{3} \uparrow + 2CH_{3}COOH + 2CO_{2} \uparrow$$

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2024. № 1

Таким образом получены образцы в виде тонких пленок ZnO<S> толщиной около 400 нм, напыленных на кремниевые подложки.

Рентгеноструктурные исследования тонких пленок ZnO<S> и кремниевых подложек выполнены на рентгеновском дифрактометре третьего поколения типа *Empyrean Malvern*. Для анализа полученных спектров использована программа *OriginPro2019*. Рентгенодифракционные измерения проведены в геометрии пучка Брэгга — Брентано в диапазоне $2\theta_{\rm E}$ = = 15...120° непрерывно со скоростью сканирования 1 град/мин.

Исследования рельефных и энергодисперсионных рентгеновских спектров металлооксидных слоев ZnO<S> выполнены методами сканирующей электронной микроскопии (СЭМ) JSM-IT200 (JEOL).

Экспериментальные результаты и их обсуждение. Рентгенограмма подложки кремния, в которой наблюдается несколько дифракционных отражений с различной интенсивностью, приведена на рис. 1. Дифракционные характеристики отражений даны в табл. 1. Поверхность использованной подложки соответствует кристаллографической ориентации (100). Высокая интенсивность (~ 0,710⁵ импсек⁻¹) и узкая ширина (FWHM $\approx 910^{-3}$ рад) основного дифракционного рефлекса (400) свидетельствуют о высокой степени совершенства кристаллической решетки подложки [13]. Однако наблюдаемые на дифракционной картине структурные линии с кристаллографическими ориентациями (220) (311), (331) и (440) с более слабой интенсивностью по сравнению с интенсивностью основного рефлекса (400)_{Si} свидетельствуют о наличии некоторых искаженных областей в объеме кремниевой подложки. Дополнительным подтверждением микроискажений кристаллической решетки подложки является наблюдаемый на спектрах немонотонный фон в интервале $2\theta = 18...59^{\circ}$, который, возможно, связан с остаточным упругим напряжением в решетке матрицы. При малых углах рассеяния $2\theta \approx 20,4^{\circ}$ на рентгенограмме наблюдается широкий (FWHM = $9,810^{-2}$ рад) диффузный рефлекс, обусловленный структурными фрагментами SiO_x в приповерхностных слоях подложки с ненасыщенными химическими связями. Наблюдаемый диффузный рефлекс при среднем угле рассеяния 20 ≈ 47,32° связан с примесными атомами фосфора в кремнии. Исследования [14] структурных параметров слоев кремния, созданных имплантацией фосфора при различных значениях температуры, показали, что атомы фосфора самообразуются в различные преципитаты; при высокой температуре отжига (1220 °C) в местах преципитатов формируются микропустоты. Эти микропустоты приводят к появлению микроискажений и упругих напряжений в решетке кремния.

Рис. 1. Рентгенограмма кремниевой подложки

Таблица 1

81

дифракцио	mibie supurie	-pmerinkin	KPC/IIII	свои подлоя	
				1	

узрактеристики кремциерой попложки

Пифракционные

Рефлекс	<i>I</i> , отн. ед.	20, град	<i>d</i> , нм	FWHK, рад
Дифракционный (SiO _x)	239	20,4	0,4406	0,098
(200) _{Si}	7330	33.1	0,2717	0,0064
(220) _{Si}	168	47,1	0,1922	0,043
Дифракционный	151	47,32	0,1901	0,23
(311) _{Si}	100	55,75	0,1649	0,018
$(400)_{Si}$	69 700	68,91	0,1366	0,00024
(331) _{Si}	134	75,6	0,1255	0,01
(440) _{Si}	60	105,46	0,0967	0,016

Следовательно, из всех наблюдаемых структурных линий только рефлекс (400) является наиболее подходящим для вычисления параметра решетки подложки, так как он самый интенсивный и узкий по ширине. Расчет с помощью экстраполяционной функции Нельсона — Рейли [15]

$$f = \frac{1}{2} \left(\cos^2 \theta / \theta + (\cos^2 \theta / \sin^2 \theta) \right)$$

по рефлексу (400) позволяет получить, что этот параметр равен $a_s = 0,5429$ нм.

Рентгенограмма металлооксидного слоя ZnO<S> приведена на рис. 2, I. Поверхность слоя соответствует кристаллографической ориентации (001) и существенно отличается от рентгенограммы кремниевой подложки.

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2024. № 1

Рис. 2. Рентгенограммы пленки ZnO<S> до (I) и после ү-облучения (II)

Полученные результаты свидетельствуют об изменении кристаллической решетки матричного слоя. Значения параметров решетки по (002): a = b = 0,3265 нм и c = 0,5212 нм. Результаты анализа экспериментальных данных показали, что рефлекс принадлежит к пространственной группе Р6₃mc и имеет гексагональную сингонию в кристаллической решетке. Кроме того, на рентгенограмме наблюдаются другие структурные отражения с различными ориентациями (см. рис. 2, I), дифракционные характеристики которых приведены в табл. 2. При малых и средних углах рассеяния рентгенограммы наблюдается значительный фон, который связан с появлением микроискажений кристаллической решетки пленки и обусловлен рассогласованием постоянных решеток матричного слоя и подложки [16, 17]:

$$\xi = \frac{2 \left| a_{\rm M.c} - a_{\rm II} \right|}{a_{\rm M.c} + a_{\rm II}}.$$

В этом случае значение рассогласования постоянных решеток равно 0,2, т. е. рассогласование решеток системы ZnO–S/Si (100) составляет 2 %. Существование различных микроискажений кристаллической решетки приводит к формированию нанообъектов в приповерхностных областях пленки [18, 19].

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2024. № 1

82

Таблица 2

83

Dechrore	ZnO-S/Si		γ-ZnO	γ-ZnO–S/Si	
Рефлекс	Ι	20, град	Ι	20, град	$\Delta \theta$
(111)	239	20,081	150,9	20,1	0,019
(100)	203	31,86	72	31,79	0,07
(002)	416,63	34,19	264	34,29	0,1
(101)	214,15	35,93	168,3	36	0,07
(102)	181,45	47,45	103,6	47,47	0,02
(110)	124,8	56,79	66,6	56,87	0,08
(333)	179	61,61	128,9	61,68	0,07
(103)	131	62,53	91,6	62,64	0,11
(200)	117,6	66,42	90,6	66,49	0,07
(112)	192	68,59	109,5	68,68	0,09
(201)	159	69,31	110	69,37	0,06
(004)	123	72,28	88,5	72,31	0,03
(202)	127,7	77,5	89,4	77,6	0,1
(104)	79	81,2	54	81,23	0,03
(203)	55,8	89,49	41	89,59	0,1
(211)	55,3	96,35	39,7	96,4	0,05
(212)	66	103,56	45,2	103,66	0,1

Дифракционные характеристики системы ZnO–S/Si до и после γ-облучения дозой 5 · 10⁶ рад

Подтверждение формирования нанообразований в кристаллической решетке — появление структурных линий (111) и (333), которые принадлежат нанокристаллитам ZnO_{1-x}S_x. Размеры нанокристаллитов определены из полуширины этих рефлексов по формуле [20]:

$$D = \frac{K\lambda}{\beta\cos\theta},\tag{1}$$

где $K \approx 0,94$ — коэффициент; $\lambda = 0,154$ нм — длина волны излучения; β — физическое уширение линии на дифрактограмме (ширина рефлекса на половине максимума интенсивности) [16],

$$\beta = \frac{1}{2} \left(B - b + \sqrt{B(B - b)} \right),$$

B — истинное уширение рефлекса; b — истинное геометрические уширение рефлекса [16]; θ — угол рассеяния (половина угла дифракции $2\theta_{\rm B}$).

Расчеты значений D по (1) показали, что размер нанокристаллитов $ZnO_{1-x}S_x$ находится в пределах значений 50...200 нм. Экспериментально

определен параметр решетки нанокристаллитов $ZnO_{1-x}S_x$: $a_{ZnO<S>} = 0,7598$ нм.

Рентгенограмма пленки ZnO<S> после γ -облучения дозой 5 · 10⁶ рад приведена на рис. 2, II. Она отличается от рентгенограммы пленки ZnO<S> до облучения (см. рис. 2, I), в которой уровень неупругого фона уменьшается на 72 % при малых и средних углах рассеяния, также наблюдается уменьшение интенсивности основного рефлекса (002) на 13,8 % и его сдвиг в сторону больших углов рассеяния (см. рис. 2, II). Кроме того, определены значения параметров решетки пленки ZnO<S> по экспериментальным данным основного рефлекса (002): a = b = 0,3246 нм и c = 0,5187 нм, т. е. эти параметры меньше параметров решетки до облучения (a = b = 0,3265 нм и c = 0,5256 нм). Наблюдаемые эффекты свидетельствуют о локальном характере сосредоточения нанокристаллитов, связанном с однородным распределением кристаллитов на поверхности пленки, и подтверждают присутствие на рентгенограмме нескольких дифракционных рефлексов (см. табл. 2).

На рентгенограмме наблюдается снижение интенсивностей и полуширины других дифракционных рефлексов и их сдвиг в сторону больших углов рассеяния. Это свидетельствует об уменьшении параметров решетки пленки ZnO и геометрических размеров нанокристаллитов ZnO_{1-x}S_x на поверхности пленки. Были проанализированы параметры этих рефлексов и установлено, что кристаллическое строение нанокристаллитов соответствует кубической решетке, принадлежащей пространственной группе F43m. Определен параметр кубической решетки нанокристаллитов по наблюдаемым рефлексам, который равен около 0,7692 нм. Средние размеры нанокристаллитов ZnO_{1-x}S_x (10...150 нм) рассчитаны по (1) с использованием представленных рентгенограмм.

СЭМ-изображение поверхности кремниевой подложки представлено на рис. 3, *а*. Данные рентгенографических исследований подложки подтверждают, что кристаллические зерна одинаковы по форме, но различны по размерам и показывают формирование микропустот в поверхностных областях кремния при высокой температуре (1220 °C) отжига. Согласно результатам, полученным на основе энергодисперсионного рентгеновского анализа кремниевой подложки (рис. 3, δ), они имеют определенный профиль распределения атомов Si, O и P по поверхности подложки. Атомное содержание Si, O, P и C имеет распределение при относительных значениях 0,7675, 0,2309, 0,0089 и 0,007 в приповерхностной области подложки. Рентгенодифракционные и электронно-микроскопические исследования...

Рис. 3. СЭМ-изображение поверхности (*a*) и энергодисперсионный рентгеновский спектр (*б*) кремниевой подложки

СЭМ-изображение поверхности полученных пленок $ZnO_{1-x}S_x$ представлено на рис. 4, *а*. В результате нанесения пленок на кремний формируются плотные с различными геометрическими формами и размерами нанокристаллиты $ZnO_{1-x}S_x$ кубической структуры, которые, возможно, принадлежат пространственной группе F43m.

Рис. 4. СЭМ-изображение поверхности (*a*) и энергодисперсионный рентгеновский спектр (*б*) пленки ZnO<S>

Диаметры сформированных нанокристаллитов принадлежат диапазону значений 50...200 нм. Эти нанокристаллиты растут перпендикулярно подложке вдоль оси *z*, полученные пленки упорядочены с большой степенью совершенства (см. рис. 4, *a*). Экспериментальные данные рентгенодифракционных исследований соответствуют данным СЭМ. Таким образом, на поверхности полученных пленок формируются нанокристаллиты с кри-

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2024. № 1 85

сталлографической ориентацией (111). Энергодисперсионный рентгеновский спектр пленки приведен на рис. 4, *б*. Атомное содержание Zn, O, S и C зависит от толщины полученной пленки и изменяется до максимальных значений 0,4989, 0,4543, 0,0366 и 0,0101 в приповерхностной области пленки.

СЭМ-изображение нанесенных пленок после γ -облучения дозой $5 \cdot 10^6$ рад показано на рис. 5, *а*. Облучение γ -квантами приводит к уменьшению размеров нанокристаллитов на поверхности пленок, т. е. способствует формированию наноразмерных квантовых объектов, которые могут привести к появлению новых свойств металлооксидных пленок.

Рис. 5. СЭМ-изображение поверхности (*a*) и энергодисперсионный рентгеновский спектр (*б*) пленок ZnO<S> после γ -облучения дозой 5 · 10⁶ рад

Энергодисперсионный рентгеновский спектр пленки ZnO<S> после γ -облучения приведен на рис. 5, *б*. Наряду с интенсивными линиями основных элементов также появляются более сильные линии примесных атомов Zn, O, S и C, их интенсивность увеличена почти в 4 раза, а атомное содержание не изменяется. Это позволяет предположить, что влияние γ -облучения на нанокристаллиты приводит к изменению их размеров и форм.

Заключение. Получены металлооксидные слои *p*-ZnO<S> толщиной примерно 400 нм, напыленные на кремниевых подложках методом ультразвукового спрей-пиролиза.

Согласно экспериментальным данным рентгенограммы кремниевой подложки, ее поверхность соответствует кристаллографической ориентации (100) и имеет высокую степень совершенства кристаллической решетки. Наблюдались диффузные отражения при средних углах рассеяния, связанные с примесными атомами фосфора. Определено, что они самообразуются в различные преципитаты, при температуре отжига более 1220 °C в местах преципитатов формируются микропустоты.

Полученные пленки на кремниевых подложках имеют кристаллографические ориентации (001) и параметры кристаллической решетки a = b == 0,3265 нм и c = 0,5212 нм. Характерные размеры нанокристаллитов ZnO_{1-x}S_x на поверхности пленки составляют 57...200 нм. Кристаллическое строение нанокристаллитов соответствует строению кубической решетки и принадлежит пространственной группе F43m с параметром решетки 0,7598 нм.

Установлено, что после γ-облучения параметры решеток и геометрические размеры нанокристаллитов на поверхности пленки уменьшаются. Рассчитаны средние размеры нанокристаллитов (10...150 нм).

В соответствии с данными СЭМ диаметр нанокристаллитов составляет 50...200 нм, нанокристаллиты растут перпендикулярно к подложке вдоль оси *z* с кристаллографической ориентацией (111). Атомное содержание Zn, O, S и C на поверхности пленок: 0,4989, 0,4543, 0,0366 и 0,0101.

Воздействие γ-облучения дозой 5 · 10⁶ рад позволяет уменьшить размеры нанокристаллитов и изменить их плотность и геометрическую форму.

ЛИТЕРАТУРА

[1] Panda S.K., Jacob. C. Preparation of transparent ZnO thin films and their application in UV sensor devices. *Solid-State Electron.*, 2012, vol. 73, pp. 44–50. DOI: https://doi.org/10.1016/j.sse.2012.03.004

[2] Георгобиани А.Н., Грузинцев А.Н., Волков В.Т. и др. Влияние отжига в радикалах кислорода на люминесценцию и электропроводность пленок ZnO:N. *Физика и техника полупроводников*, 2002, т. 36, № 3, с. 284–288.

[3] Liu W.W., Yao B., Zhang Z.Z., et al. Doping efficiency, optical and electrical properties of nitrogen-doped ZnO films. *J. Appl. Phys.*, 2011, vol. 109, iss. 9, art. 093518. DOI: https://doi.org/10.1063/1.3579454

[4] Юлдашев Ш., Зайнабидинов С., Юнусалиев Н. Ультразвуковая технология получения и свойства пленок ZnO<S>. Scientific Bulletin. Physical and Mathematical Research, 2022, № 2, с. 60–64.

[5] Рембеза С.И., Рембеза Е.С., Свистова Т.В. и др. Металлооксидные пленки: синтез, свойства и применение. Воронеж, ВГУ, 2018.

[6] Loginova M.V., Yakovlev V.I., Filimonov V.Y., et al. Formation of structural states in mechanically activated powder mixtures Ti + Al exposed to gamma irradiation. *Lett. Mater.*, 2018, vol. 8, no. 2, pp. 129–134.

DOI: https://doi.org/10.22226/2410-3535-2018-2-129-134

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2024. № 1

[7] Нусретов Р.А. Электрические и оптические свойства пленок ZnO, легированных атомами азота. Дис. ... канд. физ.-мат. наук. Ташкент, ФТИ, 2011.

[8] Николаева Н.С., Иванов В.В. Синтез высокодисперсных форм оксида цинка: химическое осаждение и термолиз. *Журнал Сибирского федерального университета. Химия*, 2010, т. 3, № 2, с. 153–173.

[9] Klingshirin C. ZnO: From basics towards applications. *PSS B*, 2007, vol. 244, iss. 9, pp. 3027–3073. DOI: https://doi.org/10.1002/pssb.200743072

[10] Chikwenze R., Ezugwu S. Sulphur induced changes in the band gap energy and the transparency window of chemical bath deposited ZnO:S thin film. *Chalcogenide Lett.*, 2015, vol. 12, no. 8, pp. 399–406.

[11] Nakamura S. Light emission movies into the blue. *Phys. World*, 1998, vol. 11, no. 2, pp. 31–35. DOI: https://doi.org/10.1088/2058-7058/11/2/31

[12] Khabibullaev P.K., Yuldashev Sh.U., Nusretov R.A. Electroluminescence of ZnObased *p*–*i*–*n* structures fabricated by the ultrasound-spraying method. *Dokl. Phys.*, 2007, vol. 52, no. 6, pp. 300–302. DOI: https://doi.org/10.1134/S102833580706002X

[13] Зайнабидинов С.З., Саидов А.С., Бобоев А.Й. и др. Структура, морфология и фотоэлектрические свойства гетероструктуры n-GaAs-p-(GaAs)_{1-x}(Ge₂)_x. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2022, № 1 (100), с. 72–87. DOI: https://doi.org/10.18698/1812-3368-2022-1-72-87

[14] Белоус А.И., Васильев Ю.Б., Оджаев В.Б. и др. Структурные и электрофизические параметры сильно легированных слоев кремния и-типа, создаваемых ионной имплантацией. *Микроэлектроника*, 2013, т. 42, № 1, с. 50–55.

DOI: https://doi.org/10.7868/S0544126913010055

[15] Сетюков О.А., Самойлов А.И. Влияние юстировки рентгеновского дифрактометра на зависимость периода решетки от экстраполяционной функции Нельсона — Райли. Заводская лаборатория. Диагностика материалов, 2011, т. 77, № 8, с. 34–36.

[16] Зайнабидинов С.З., Утамурадова Ш.Б., Бобоев А.Й. Структурные особенности твердого раствора $(ZnSe)_{1-x-y}(Ge_2)_x(GaAs_{1-\delta}Bi)_y$ с различными нановключениями. Поверхность. Рентгеновские, синхротронные и нейтронные исследования, 2022, № 12, с. 48–52. DOI: https://doi.org/10.31857/S1028096022120342

[17] Губа С.К., Юзевич В.Н. Расчет поверхностных характеристик и давлений квантовых точек InAs в матрице GaAs. *Физика и техника полупроводников*, 2014, т. 48, № 7, с. 932–937.

[18] Дубровский В.Г. Теоретические основы технологии полупроводниковых наноструктур. СПб., ИТМО, 2019.

[19] Зайнабидинов С.З., Бобоев А.Й., Абдурахимов Д.П. Структурные особенности твердого раствора (GaAs)_{1-x}(Ge₂)_x с квантовыми нанообразованиями. ДАН, 2022, № 1, с. 22–25.

[20] Уманский Я.С., Скаков Ю.А., Иванов А.Н. и др. Кристаллография, рентгенография и электронная микроскопия. М., Металлургия, 1982.

⁸⁸ ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2024. № 1

Зайнабидинов Сиражиддин Зайнабидинович — академик АН Республики Узбекистан, д-р физ.-мат. наук, профессор, АндГУ (Республика Узбекистан, 170100, Андижан, ул. Университетская, д. 129).

Юлдашев Шавкат Узгенович — д-р физ.-мат. наук, профессор, НУУз (Республика Узбекистан, 100174, Ташкент, ул. Университетская, д. 4).

Бобоев Акрамжон Йулдашбоевич — канд. наук, доцент, АндГУ (Республика Узбекистан, 170100, Андижан, ул. Университетская, д. 129).

Юнусалиев Нуритдин Юнусали угли — докторант, АндГУ (Республика Узбекистан, 170100, Андижан, ул. Университетская, д. 129).

Просьба ссылаться на эту статью следующим образом:

Зайнабидинов С.З., Юлдашев Ш.У., Бобоев А.Й. и др. Рентгенодифракционные и электронно-микроскопические исследования металлооксидных пленок ZnO<S>, полученных методом ультразвукового спрей-пиролиза. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2024, № 1 (112), с. 78–92. EDN: GFUKHQ

X-RAY DIFFRACTION AND ELECTRON MICROSCOPIC STUDIES OF THE ZnO<S> METAL OXIDE FILMS OBTAINED BY THE ULTRASONIC SPRAY PYROLYSIS METHOD

S.Z. Zaynabidinov1prof_sirojiddin@mail.ruSh.U. Yuldashev2prof_yuldashev@mail.ruA.Y. Boboev1aboboevscp@gmail.comN.Yu. Yunusaliyev1nyunusaliyev1997@gmail.com

 ¹ Andijan State University named after Z.M. Babur, Andijan, Republic of Uzbekistan
² National University of Uzbekistan named after Mirzo Ulugbek, Tashkent, Republic of Uzbekistan

Abstract

Samples of thin ZnO<S> films with thickness of approximately 400 nm deposited on a silicon substrate by the ultrasonic spray pyrolysis were obtained. The films had crystallographic orientation (001) with the lattice parameters a = b = 0.3265 nm and c == 0.5212 nm. The ZnO_{1-x}S_x nanocrystallites on the film surface had characteristic sizes in the range of 50–200 nm. The nanocrystallites lattice parameter was experimentally determined: 0.7598 nm. A decrease in the ZnO film lattice parameters and the geometric dimensions of nanocrystallites on the film

Keywords

Silicon, metal oxide, crystallographic orientation, lattice parameter, geometric shape, nanocrystallite, γ -irradiation

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2024. № 1

surface exposed to γ -irradiation was established.	
It was determined that the nanocrystals crystalline	
structure corresponded to the cubic lattice and	
belonged to the F43m space group with the lattice	
parameter of 0.7692 nm. According to the scanning	
electron microscopy, the nanocrystallites diameter	
was 50-200 nm, the nanocrystallites were growing	
perpendicular to the substrate along the z-axis	
with crystallographic orientation (111). It was estab-	
lished that the influence of γ -irradiation with a dose	
of 5.106 rad was making it possible to reduce the	Received 10.02.2023
nanocrystallites size and led to alteration in their	Accepted 19.05.2023
density and geometric shape	© Author(s), 2024

The work was supported by the Ministry of Innovative Development of the Republic of Uzbekistan (grant no. FZ-292154210)

REFERENCES

[1] Panda S.K., Jacob. C. Preparation of transparent ZnO thin films and their application in UV sensor devices. *Solid-State Electron.*, 2012, vol. 73, pp. 44–50. DOI: https://doi.org/10.1016/j.sse.2012.03.004

[2] Georgobiani A.N., Gruzintsev A.N., Volkov V.T., et al. Effect of annealing in oxygen radicals on luminescence and electrical conductivity of ZnO:N films. *Semiconductors*, 2002, vol. 36, no. 3, pp. 265–269. DOI: https://doi.org/10.1134/1.1461400

[3] Liu W.W., Yao B., Zhang Z.Z., et al. Doping efficiency, optical and electrical properties of nitrogen-doped ZnO films. *J. Appl. Phys.*, 2011, vol. 109, iss. 9, art. 093518. DOI: https://doi.org/10.1063/1.3579454

[4] Yuldashev Sh., Zaynabidinov S., Yunusaliev N. Ultrasonic technology of production and properties of ZnO<S> films. *Scientific Bulletin. Physical and Mathematical Research*, 2022, no. 2, pp. 60–64.

[5] Rembeza S.I., Rembeza E.S., Svistova T.V., et al. Metallooksidnye plenki: sintez, svoystva i primenenie [Metal-oxide films: synthesis, properties and applications]. Voronezh, VSU Publ., 2018.

[6] Loginova M.V., Yakovlev V.I., Filimonov V.Y., et al. Formation of structural states in mechanically activated powder mixtures Ti + Al exposed to gamma irradiation. *Lett. Mater.*, 2018, vol. 8, no. 2, pp. 129–134.

DOI: https://doi.org/10.22226/2410-3535-2018-2-129-134

[7] Husretov P.A. Elektricheskie i opticheskie svoystva plenok ZnO legirovannykh atomami azota. Dis. kand. fiz.-mat. nauk [Electrical and optical properties of ZnO films doped with nitrogen atoms. Cand. Sc. (Phys.-Math.) Diss.]. Tashkent, FTI Publ., 2011 (in Russ.). Рентгенодифракционные и электронно-микроскопические исследования...

[8] Nikolaeva N.S., Ivanov V.V. The chemical precipitation and thermal decomposition as the way for producing ultrafine zinc oxide forms. *Zhurnal Sibirskogo federalnogo universiteta. Khimiya* [Journal of Siberian Federal University. Chemistry], 2010, vol. 3, no. 2, pp. 153–173 (in Russ.).

[9] Klingshirin C. ZnO: From basics towards applications. *PSS B*, 2007, vol. 244, iss. 9, pp. 3027–3073. DOI: https://doi.org/10.1002/pssb.200743072

[10] Chikwenze R., Ezugwu S. Sulphur induced changes in the band gap energy and the transparency window of chemical bath deposited ZnO:S thin film. *Chalcogenide Lett.*, 2015, vol. 12, no. 8, pp. 399–406.

[11] Nakamura S. Light emission movies into the blue. *Phys. World*, 1998, vol. 11, no. 2, pp. 31–35. DOI: https://doi.org/10.1088/2058-7058/11/2/31

[12] Khabibullaev P.K., Yuldashev Sh.U., Nusretov R.A. Electroluminescence of ZnObased p-i-n structures fabricated by the ultrasound-spraying method. *Dokl. Phys.*, 2007, vol. 52, no. 6, pp. 300–302. DOI: https://doi.org/10.1134/S102833580706002X

[13] Zaynabidinov S.Z., Saidov A.S., Boboev A.Y., et al. Structure, morphology and photoelectric properties of n-GaAs–p-(GaAs)_{1-x}(Ge₂)_x heterostructure. *Herald of the Bauman Moscow State Technical University, Series Natural Sciences*, 2022, no. 1 (100), pp. 72–87 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2022-1-72-87

[14] Belous A.I., Vasilyev Yu.B., Odzhaev V.B., et al. Structural and electrophysical parameters of heavily doped i-type silicon layers created by ion implantation. *Mikroelektronika*, 2013, vol. 42, no. 1, pp. 50–55 (in Russ.).

DOI: https://doi.org/10.7868/S0544126913010055

[15] Setyukov O.A., Samoylov A.I. The effect of the x-ray diffractometer alignment on the lattice constant dependence on the Nelson — Riley extrapolation function. *Zavodskaya laboratoriya. Diagnostika materialov* [Industrial Laboratory. Materials Diagnostics], 2011, vol. 77, no. 8, pp. 34–36 (in Russ.).

[16] Zaynabidinov S.Z., Utamuradova Sh.B., Boboev A.Y. Structural peculiarities of the $(ZnSe)_{1-x-y}(Ge_2)_x(GaAs_{1-\delta}Bi_{\delta})_y$ solid solution with various nanoinclusions. *J. Surf. Investig.*, 2022, vol. 16, no. 12, pp. 1130–1134.

DOI: https://doi.org/10.1134/S1027451022060593

[17] Guba S.K., Yuzevich V.N. Calculation of the surface characteristics and pressures of InAs quantum dots in a GaAs matrix. *Semiconductors*, 2014, vol. 48, no. 7, pp. 905–910. DOI: https://doi.org/10.1134/S1063782614070082

[18] Dubrovskiy V.G. Teoreticheskie osnovy tekhnologii poluprovodnikovykh nanostruktur [Theoretical bases of semiconductor nanostructure technology]. St. Petersburg, ITMO Publ., 2019.

[19] Zaynabidinov S.Z., Boboev A.Y., Abdurakhimov D.P. Structural features of a solid solution $(GaAs)_{1-x}(Ge_2)_x$ with quantum nanoparticles. *Doklady Akademii Nauk*, 2022, no. 1, pp. 22–25 (in Russ.).

[20] Umanskiy Ya.S., Skakov Yu.A., Ivanov A.N., et al. Kristallografiya, rentgenografiya i elektronnaya mikroskopiya [Crystallography, X-ray diffraction and electron microscopy]. Moscow, Metallurgiya Publ., 1982.

91

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2024. № 1

Zaynabidinov S.Z. — Academician of the Academy of Sciences of the Republic of Uzbekistan, Dr. Sc. (Phys.-Math.), Professor, Andijan State University named after Z.M. Babur (Universitetskaya ul. 129, Andijan, 170100 Republic of Uzbekistan).

Yuldashev Sh.U. — Dr. Sc. (Phys.-Math.), Professor, National University of Uzbekistan named after Mirzo Ulugbek (Universitetskaya ul. 4, Tashkent, 100174 Republic of Uzbekistan).

Boboev A.Y. — Cand. Sc. (Phys.-Math.), Assoc. Professor, Andijan State University named after Z.M. Babur (Universitetskaya ul. 129, Andijan, 170100 Republic of Uzbekistan).

Yunusaliyev N.Yu. — Doctoral Student, Andijan State University named after Z.M. Babur (Universitetskaya ul. 129, Andijan, 170100 Republic of Uzbekistan).

Please cite this article in English as:

Zaynabidinov S.Z., Yuldashev Sh.U., Boboev A.Y., et al. X-ray diffraction and electron microscopic studies of the ZnO<S> metal oxide films obtained by the ultrasonic spray pyrolysis method. *Herald of the Bauman Moscow State Technical University, Series Natural Sciences*, 2024, no. 1 (112), pp. 78–92 (in Russ.). EDN: GFUKHQ