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Abstract Keywords 
In this paper the Extreme learning machine (ELM) 
based Drongos search (DS) algorithm — ELMDS algo-
rithm — is applied to solve the power loss lessening 
problem. Extreme learning machine is applied and 
learning speed of feed-forward neural networks is com-
posed of input, hidden and output layer. Drongos search 
algorithm is a modern algorithm which is inspired 
on the elegance performance of Drongos. In expedition 
to control obscured place a Drongos j pursuit Drongos i. 
Formerly Drongos i do not sentient of the existence 
of the added Drongos, as a consequence to the cause 
of Drongos j is to accomplish. And in Fiddling “Dron-
gos” i differentiate about the presence of Drongos j and 
it protector its nourishment, Drongos i calculatingly take 
an impulsive way to sentinel its nourishment. This show 
is replicated by employing an unpredictable evolution. 
Then care possibility is replaced by a vibrant care possi-
bility for enrichment, which is adapted by the aptness 
supremacy of every contender solution. Lévy flights are 
employed as a substitute of unswerving illogical activi-
ties to duplicate the dodging performance. In ELMDS 
algorithm input weight rate and concealed layer incep-
tion in ELM are logically optimized by the DS algorithm. 
Legitimacy of ELMDS algorithm is corroborated in 
IEEE 30 bus system and IEEE 14, 30, 57, 118, 300 bus 
test systems without considering the voltage constancy 
index. True power loss lessening, voltage divergence 
curtailing, and voltage constancy index augmentation 
has been attained
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Introduction. Optimal reactive power dispatch is envisaged as one of the 
remarkable circumstances for safe and fiscal operation of a system. It is 
consummate by appropriate organization of the edifice apparatus used to cope 
up the power flow with the goal of diminishing the true power losses and 
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progress the voltage outline of the structure. Lee et al. [1] had done a united 
approach to optimal real and reactive power dispatch. Dommel et al. [2] did 
optimal power flow solutions. Medani et al. [3] solved whale optimization 
algorithm based optimal reactive power dispatch: A case study of the Algerian 
power system. Taha et al. [4] did optimal reactive power resources sizing for 
power system operations enhancement based on improved grey wolf optimizer. 
Sakr et al. [5] had done adaptive differential evolution algorithm for efficient 
reactive power management. Heidari et al. [6] applied Gaussian barebones water 
cycle algorithm for optimal reactive power dispatch in electrical power systems. 
Keerio et al. [7] had done multi-objective optimal reactive power dispatch 
considering probabilistic load demand along with wind and solar power 
integration. Roy et al. [8] did optimal reactive power dispatch for voltage 
security using JAYA algorithm. Mugemanyi et al. [9] had done optimal reactive 
power dispatch using chaotic bat algorithm. Sahli et al. [10] applied hybridized 
PSO-Tabu exploration for the problem. Mouassa et al. [11] applied Ant lion 
algorithm for solving the problem. Mandal et al. [12] solved the problem  
by using quasi-oppositional teaching. Khazali et al. [13] solved the problem  
by harmony search procedure. Tran et al. [14] solved problem by innovative 
enhanced stochastic fractal search procedure. Polprasert et al. [15] solved the 
problem by using enhanced pseudo-gradient pursuit particle swarm 
optimization. Thanh et al. [16] solved the problem by an operative metaheuristic 
procedure. Raghuwanshi et al. [17] did class imbalance learning using under 
bagging based kernelized extreme learning machine. Yu X. et al. [18] had done 
dual-weighted kernel extreme learning machine for hyperspectral imagery 
classification. Han et al. [19] did hyperspectral image classification based  
on multiple reduced kernel extreme learning machine. From Illinois Center [20] 
for a Smarter Electric Grid (ICSEG) IEEE 30 bus system data obtained. Dai  
et al. [21] used seeker optimization procedure for solving the problem. Subbaraj 
et al. [22] used self-adaptive real coded genetic procedure to solve the problem. 
Pandya et al. [23] applied particle swarm optimization to solve the problem.  
Ali Nasser Hussain et al. [24] applied amended particle swarm optimization  
to solve the problem. Vishnu et al. [25] applied an enhanced particle swarm 
optimization to solve the problem. Omelchenko I.N. et al. [26] did development 
of a design algorithm for the logistics system of product distribution of the 
mechanical engineering enterprise. Omelchenko I.N. et al. [27] did the work  
on organization of logistic systems of scientific productions. Omelchenko I.N.  
et al. [28] solved the problems and organizational and technical solutions  
of processing management problems of material and technical resources in  
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a design-oriented organization. Khunkitti et al. [29] solved multi-objective 
optimal power flow problems based on slime mould algorithm. Diab et al. [30] 
solved multi-objective optimal power flow control of electrical transmission 
networks using intelligent meta-heuristic optimization techniques. Reddy [31] 
solved optimal reactive power scheduling using Cuckoo search algorithm. 
Reddy [32] did faster evolutionary algorithm based optimal power flow  
using incremental variables. In this paper Extreme learning machine (ELM)  
based Drongos search (DS) algorithm — ELMDS algorithm — is applied  
to solve the real power loss lessening problem. Extreme learning machine is 
applied and learning speed of feed-forward neural networks is composed  
of input, hidden and output layer. Drongos search algorithm is a modern 
algorithm which is inspired on the elegance performance of Drongos.  
In expedition to control obscured place a Drongos j pursuit Drongos i. Formerly 
Drongos i do not sentient of the existence of the added Drongos, as a 
consequence to the cause of Drongos j is to accomplish. In Fiddling Drongos i 
differentiate about the presence of Drongos j and it protector its nourishment, 
Drongos i calculatingly take an impulsive way to sentinel its nourishment. This 
show is replicated by employing an unpredictable evolution. Each Drongos i 
performance is pronounced by a care possibility cp. Consequently, an 
unpredictable value ir  consistently disseminated between 0 and 1. If ir  is 
improved than or equivalent to cp, show 1 is applied, if not state 2 is designated. 
Then cp, is replaced by a vibrant care possibility vcp for enrichment, which  
is adapted by the aptness supremacy of every contender solution. Lévy flights are 
employed as a substitute of unswerving illogical activities to duplicate  
the dodging performance. Accordingly, a novel capricious location , 1i kZ   
is produced, in addition to the current location ,i jZ  from calculated Lévy flight 
Lf. Through Mantegna procedure, the main segment is to evaluate the stage size 
Si. In ELMDS algorithm input weight rate and concealed layer inception in ELM 
are logically optimized by the DS algorithm. Legitimacy of the ELMDS 
algorithm is corroborated in IEEE 30 bus system and IEEE 14, 30, 57, 118, 300 
bus test systems without considering the voltage constancy index. True power 
loss lessening, voltage divergence curtailing, and voltage constancy index 
augmentation has been attained. 

Problem formulation. Power loss minimization is defined by 
min  , ,F d e  where min is minimization of power loss. Subject to the con-
straints , 0;A d e , 0,B d e  d, e are control and dependent variables,  

 1 1 1, , ; , , ; , , ;TNg Nc Nd VLG VLG QC QC T T  



L. Kanagasabai  

44  ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2024. № 1 

 1 1 1; , , ; , , ; , , .slack NLoad Ng NTe PG VL VL QG QG SL SL  

Here QC  is reactive power compensators; T  is tap setting of transformers; 
slackPG  is slack generator;  gVL  is level of the voltage; QG  is generation unit’s 

reactive power;  SL  is apparent power. 
The fitness function 1 2 3, ,F F F  is designed for power loss (MW) lessen-

ing, voltage deviancy, voltage constancy index (L-index) is defined by: 

 2 21 min min 2 cos ;
NTL

m i j iji j
m
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where  NTL  is number of transmission line; , LBN Ng  are number load and 
generating units; kVL  is load voltage in k-th load bus; desired

kVL  is voltage 
desired at the k-th load bus; KQG  is reactive power generated at k-th  
load bus generators; lim

GQK  is reactive power limitation; max max ,jL L
1, , ,LBj N  

 1
1

1 2

1 ,

;

NPV i
j ji

ji

ji

VL F
V

F Y Y

 

 

1
max 1 2max 1 .i

j

VL Y Y
V

 

Parity constraints: 
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Disparity constraints: 

 min max ;slackslack slackPG PG PG  min max   ,,ii iQG QG QG i Ng  
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 min max , ,QС QС QС i NC  max ,   ,i iSL SL i NTL  

 min max , .ii iVG VG VG i Ng  

Multi objective fitness function: 
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Extreme learning machine. Extreme learning machine is applied and 
learning speed of feed-forward neural networks is composed of input, hidden 
and output layer [17–19]. Remarkably, the learning speed of ELM can be 
thousands of times quicker than customary feed forward network learning 
procedures. When equated with orthodox learning algorithms, ELM not only 
incline to grasp the smallest training error nevertheless it obtains the minimum 
standard of weights. Extreme learning machine assurances the noble 
performance, and significantly progresses the learning speed of the forward 
neural networks, and evades many of the problems of gradient descent training 
approaches epitomized by BP neural networks, like easiness of being stuck into 
local optimum, more number of iterations, and so on. 

The linking neurons weight matrix of input to hidden layer is demarcated 
as: 
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Neurons weight matrix of input to hidden layer nwt  is defined as: 

 

1
11 1

2

1

.

T

nt

L LnT
l

nwt
nwt nwt

nwt
nwt

nwt nwt
nwt  



L. Kanagasabai  

46  ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2024. № 1 

Neurons hidden layer bias vector :bvr  
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Procedure of the ELM is as defined as follows: 
a. Begin 
b. Input the data  
c. Conjoint data test and training sets are created 
d. With alignment to the training set — control the amount of (X) 
e. (1) 
f. Regulate the output rate of weight  
g. (2) 
h. With alignment to the test set — appraise the rate of (V) 
i. (1) 
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j. Assess the actual rate through nwt  and V 
k. Computation of error degree  
l. Valuation of actual value with possible rate  
m. Return the error rate  
n. End  

Drongos search algorithm. Drongos search algorithm is a modern algo-
rithm which is inspired by elegance performance of Drongos. Magnitude  
of Drongos is recognized by N entities and the position ,i kZ  of the Drongos i 
in a fixed iteration k is demarcated as: 
 1 2, , , ,, , , , 1, 2, , , 1, 2, , max. iter.ni k i k i k i kZ z z z i N k  

Every Drongos is supposed to have the probability of remembering the premi-
um visited position , i kH  to conceal nourishment up until the contemporary 
iteration specified as: 1 2, , , ,, , , .ni k i k i k i kH h h h  

Expedition: To control obscured place a Drongos j pursuit Drongos i. 
Formerly Drongos i do not sentient of the existence of the added Drongos,  
as a consequence to the cause of Drongos j is to accomplish. 

Fiddling: Drongos i differentiate about the presence of Drongos j and it 
protector its nourishment, Drongos i calculatingly take an impulsive way  
to sentinel its nourishment. This show is replicated by employing an unpre-
dictable evolution. 

Each Drongos i performance is pronounced by a care possibility cp. Con-
sequently, an unpredictable value ir  consistently disseminated between 0 and 
1. If ir  is improved than or equivalent to care possibility, show 1 is applied,  
if not state 2 is designated: 

 , , , ,
, 1

    ;   
Rand  or else,               

i k i i k i k i k i
i k

z r fi H Z r cp
Z   (3) 

where ,i kfi  is elect the gauge of development from Drongos ,i kZ  in the way of 
premium place ,i kH  of Drongos j; the ir  is a whimsical amount with vague 
dissemination in the sort of [0, 1]. Once the Drongos are personalized, at that 
moment their position is assessed and memory vector is streamlined: 

 , 1 , 1 ,
, 1
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   ;     
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Then care possibility is replaced by a vibrant care possibility vcp for enrich-
ment, which is adapted by the aptness supremacy of every contender solution: 
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i k
F Z
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  (4) 

Lévy flights are employed as a substitute of unswerving illogical activities  
to duplicate the dodging performance. Accordingly, a novel capricious location 

, 1i kZ  is produced, in addition to the current location ,i jZ  from calculated Lévy 
flight Lf. Through Mantegna procedure, the main segment is to evaluate the 
stage size Si as follows: 

 
1/ ,i
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b
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 2 1 /2
1 sin / 2

,
1 / 2

a  1.b  

Factor Lf is calculated by ,Lf 0.01 .bj i kS Z Z  
Novel location , 1i kZ  is given by 

 , 1 , Lf .i k i kZ Z  (5) 

Crusade and swiftness of the swarm by using particle swarm optimization 
is integrated in the procedure: 

 1
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Mutation probability is defined as: 
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Afterward the places are rationalized then the mid particle mp is included 
in the population: 

 

1
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By time wavering swiftness fluctuations is organized by 
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Algorithm 
a. Start 
b. Initialization of agents  
c. Mid particle mp is included in the population 
d. (8) 
e. Particle’s location and drive are calculated  
f. (6) 
g. (7) 
h. Quixotically stimulate the Drongos location  
i. Memory has been weighed down with orientation to initial position 
j. For each place fitness point has been calculated  
k. Vibrant care possibility vcp is computed 
l. (4) 
m. Engender the whimsical value ir  for each Drongos i 
n. ;ir vcp  If “Yes” then compute fresh location 
o. (3) 
p. If “No” calculate fresh location  
q. (5) 
r. Prospect of the fresh location has to be set up  
s. Fresh locations fitness rate has to be calculated  
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t. Streamline the memory when development in fitness rate  
u. Local operative is smeared  
v. (10) 
w. (9) 
x. Once termination condition is not met then go to step “c” 
y. Return the preeminent solution  
z. End  

ELMDS algorithm. Input weight rate and concealed layer inception in 
ELM are logically optimized by DS algorithm. Fig. 1 shows the schematic 
diagram of ELMDS algorithm: 

a. Begin 
b. Input the data  
c. Conjoint data test and training set are created 
d. With alignment to the training set — control the amount of (X) 
e. (1) 
f. Regulate the output rate of weight  
g. (2) 
h. With alignment to the test set — appraise the rate of (V) 
i. (1) 
j. Assess the actual rate through nwt  and V 
k. Calculation of error degree  
l. Assessment of real value with probable rate  
m. Return the error rate  
n. Apply the DS algorithm 

i. Start  
ii. Initialization of agents  

iii. Mid particle mp is included in the population 
iv. (8) 
v. Particle’s location and drive are calculated  

vi. (6) 
vii. (7) 

viii. Quixotically stimulate the Drongos location  
ix. Memory has been weighed down with orientation to initial 
position 
x. For each place fitness point has been calculated  

xi. Vibrant care possibility vcp is computed  
xii. (4) 

xiii. Engender the whimsical value ir  for each Drongos i 
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xiv. ;ir vcp  If “Yes” then compute fresh location 
xv. (3) 

xvi. If “No” calculate fresh location  
xvii. (5) 

xviii. Prospect of the fresh location has to be set up  
xix. Fresh locations fitness rate has to be calculated 
xx. Streamline the memory when development in fitness rate  

xxi. Local operative is smeared  
xxii. (10) 

xxiii. (9) 
xxiv. Once termination condition is not met then go to step “c” 
xxv. Return the preeminent solution  

xxvi. End  
o. Computing the output error 
p. Parameters values are verified  
q. Update the data  
r. End while  
s. Return the optimal solution  
t. End  

Extreme learning machine process encompasses double steps, training 
authentication and test segment. The dataset is arbitrarily segregated into dual 
non-overlapped sets, in order to create the input training authentication 
matrix and test single. Input matrix is possessing load demand (real and 
reactive power ( ,  ) ))(D DP Q  bus voltage magnitude ( ).iV  The goal matrix is 
enclosing power generation (real and reactive power ( ,  ) ))(G GP Q  and system 
losses (real and reactive ( ,  () )).ij ijP Q  ELM training time 0.0469, training per-
formance is 3.564e–25 and testing performance is 8.218e–27. 

Computation complexit. To compute the fitness value the time is required 
and the time complication is defined as 1 2O z N nz f n  

.O n f n  Then the time required for the iterative update and the  
time complication is demarcated as 3 4 5 6O N nz f n z z z  

.O n f n   The loop fragment time complication is 

 3 4 5 6 2 3 1 .O N nz f n z z z N z z z O n f n  

Sequentially the entire time complication is defined as 

   .Time n O n f n n f n O n f n  
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Fig. 1. Schematic diagram of ELMDS algorithm 

Simulation results and discussion. Projected ELMDS algorithm is 
corroborated in IEEE 30 bus system [20]. In Table 1 shows the loss appraisal, 
Table 2 shows the voltage aberration evaluation and Table 3 gives the voltage 
constancy assessment. Figures 2, 3 gives the graphical appraisal between the 
methods. ELMDS abridged the power loss efficiently. Appraisal of loss has been 
done with particle swarm optimization, adapted particle swarm optimization, 
enriched particle swarm optimization, comprehensive learning particle swarm 
optimization, adaptive genetic algorithm, canonical genetic algorithm, enhanced 
genetic algorithm, hybrid particle swarm optimization — Tabu search, Ant lion 
approach, quasi-oppositional teaching learning based algorithm, enriched 
stochastic fractal search optimization algorithm, harmony search, advanced 
pseudo-gradient search particle swarm optimization and cuckoo search 
algorithm. Power loss abridged competently and proportion of the power loss 
lessening has been enhanced. Predominantly voltage constancy augmentation 
attained with minimized voltage deviancy. 
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Table 1 

Assessment of real power loss 

Algorithm Power loss, MW Algorithm Power loss, MW 

Hybrid-PSOTS [10] 4.5213 S-GA [13] 4.9408 
B-TS [10] 4.6862 B-PSO [13] 4.9239 
S-PSO [10] 4.6862 Hybrid-AS [13] 4.9059 
B-ALO [11] 4.5900 B-FS [14] / B-FS [16] 4.5777 / 4.5275 
Hybrid QOTLBO [12] 4.5594 Hybrid-ISFS [14] 4.5142 
B-TLBO [12] 4.5629 ELMDS 4.4019 

 
Table 2 

Comparison of voltage deviancy 

Algorithm Voltage devi-
ancy, PU Algorithm Voltage deviancy, 

PU 
Hybrid-PSOTVIW [15] 0.1038 Hybrid-QOTLBO [12] 0.0856 
Hybrid-PSOTVAC [15] 0.2064 B-TLBO [12] 0.0913 
Hybrid-PSOTVAC [15] 0.1354 B-FS [14] 0.1220 
Hybrid-PSOCF [15] 0.1287 Hybrid-ISFS [14] 0.0890 
Hybrid-PGPSO [15] 0.1202 B-FS [16] 0.0877 
Hybrid-SWTPSO [15] 0.1614 CLO 0.0849 
Hybrid-PGSWTPSO [15] 0.1539 BO 0.0840 
Hybrid-MPGPSO [15] 0.0892 ELMDS 0.0828 

Table 3 

Appraisal of voltage constancy 

Algorithm Voltage constancy  
(L-index), PU Algorithm Voltage constancy  

(L-index), PU 
Hybrid-PSOTVIW [15] 0.1258 B-TLBO [12] 0.1180 
Hybrid-PSOTVAC [15] 0.1499 B-ALO [11] 0.1161 
Hybrid-PSOTVAC [15] 0.1271 B-ABC [11] 0.1161 
Hybrid-PSOCF [15] 0.1261 B-GWO [11] 0.1242 
Hybrid-PGPSO [15] 0.1264 B-BA [11] 0.1252 
Hybrid-SWTPSO [15] 0.1488 B-FS [14] 0.1252 
Hybrid-PGSWTPSO [15] 0.1394 Hybrid-ISFS [14] 0.1245 
Hybrid-MPGPSO [15] 0.1241 B-FS [16] 0.1007 
Hybrid-QOTLBO [12] 0.1191 ELMDS 0.1002 
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Fig. 2. Assessment of actual power loss, MW 

 

Fig. 3. Appraisal of voltage aberration (a), and assessment of voltage constancy  
index (b) 
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Then the ELMDS algorithm is substantiated in IEEE 14, 30, 57, 118  
and 300 bus test systems deprived of voltage constancy. Loss appraisal  
is shown in Tables 4 to 8. Figure 4, 5 gives graphical comparison between the 
approaches with orientation to power loss. Proposed algorithms are compared 
with adapted particle swarm optimization, particle swarm optimization, evolu-
tionary programming, self-adaptive real coded genetic algorithm, canonical 
genetic algorithm, adaptive genetic algorithm, enhanced particle swarm opti-
mization, comprehensive learning particle swarm optimization, enhanced  
genetic algorithm, faster evolutionary algorithm and cuckoo search optimiza-
tion algorithm. 

Table 4 

Assessment of results (IEEE 14 bus system) 

Algorithm True loss, MW Ratio of loss diminution 

Base case [24] 13.550 0 

Improved PSO [24] 12.293 9.20 

B-PSO [23] 12.315 9.10 

B-EP [23] 13.346 1.50 

Hybrid-SARGA [22] 13.216 2.50 

ELMDS 10.069 25.69 
 

Table 5 

Appraisal of loss (IEEE 30 bus system) 

Algorithm Actual power loss, MW Proportion of lessening  
in power loss 

Base case value [24] 17.5500 0 

Improved PSO[24] 16.0700 8.40000 

B-PSO [23] 16.2500 7.40000 

B-EP [21] 16.3800 6.60000 

B-GA [22] 16.0900 8.30000 

S-PSO [25] 17.5246 0.14472 

Improved DEPSO [25] 17.5200 0.17094 

B-JAYA [25] 17.5360 0.07977 

ELMDS 14.0320 20.0455 
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Table 6 

Assessment of parameters (IEEE 57 bus system) 

Algorithm True loss, MW Ratio of loss diminution 

Base case [24] 27.8 0 

Improved PSO [24] 23.51 15.4000 

B-PSO [23] 23.86 14.1000 

Canonical-GA[22] 25.24 9.2000 

Adaptive-GA [22] 24.56 11.6000 

ELMDS 21.062 24.2374 

Table 7 

Assessment of results (IEEE 118 bus system) 

Algorithm True loss, MW Ratio of loss diminution 

Base case [24] 132.8 0 

Improved PSO [24] 117.19 11.700 

B-PSO [23] 119.34 10.100 

B-EPSO [21] 131.99 0.6000 

B-CLPSO [21] 130.96 1.3000 

ELMDS 112.012 15.6536 
 

Table 8 

Power loss appraisal (IEEE 300 bus system) 

Algorithm True loss, MW 

Adaptive-GA [32] 646.299800 

Faster-EA [32] 650.602700 

B-CSO [31] 635.894200 

ELMDS 625.106428 
 
Table 9 shows the convergence characteristics of projected ELMDS 

algorithm for IEEE 30 bus system. In IEEE 30 bus projected ELMDS algorithm 
has been evaluated as multi objective and single objective mode. Figure 6 shows 
the graphical representation of the characteristics. 
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Fig. 4. Power loss appraisal: 
a) IEEE 14 bus system; b) IEEE 30 bus system; c) IEEE 57 bus system; true loss ( ), 

proportion of lessening in power loss ( ); ratio of loss diminution ( ) 
 

Fig. 5. Power loss appraisal: 
a) IEEE 118 bus system; b) IEEE 300 bus system; ratio of loss diminution ( ), true loss ( ) 
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Table 9 

Convergence characteristics of ELMDS algorithm 

Actual loss with / without 
power reliability, MW 

Time with / without 
power reliability, s 

Number of iteration with / 
without power reliability 

4.4019 / 14.032 28.29 / 24.98 29 / 20 
 

 

 
Fig. 6. Convergence characteristics: 

actual loss with ( ) or without ( ) 
 voltage constancy; actual loss with ( )  

or without ( ) voltage constancy;  
number of iteration with ( )  

or without ( ) voltage constancy 

Conclusion. ELMDS algorithm reduced the genuine power loss competent-
ly. Proposed algorithms is corroborated in IEEE 30 bus system and IEEE 14, 30, 
57, 118, 300 bus test systems without considering the voltage constancy index. 
True power loss lessening, voltage divergence curtailing, and voltage constancy 
index augmentation has been attained. ELMDS algorithm creditably condensed 
the power loss and proportion of Actual power loss lessening has been elevated. 
Extreme learning machine is applied and learning speed of feed-forward neural 
networks is composed of input, hidden and output layer. Drongos search algo-
rithm is a modern algorithm which is inspired on the elegance performance  
of Drongos. In expedition to control obscured place a Drongos j pursuit Dron-
gos i. Formerly Drongos i do not sentient of the existence of the added Drongos, 
as a consequence to the cause of Drongos j is to accomplish. In Fiddling Dron-
gos i differentiate about the presence of Drongos j and it protector its nourish-
ment, Drongos i calculatingly take an impulsive way to sentinel its nourishment. 
This show is replicated by employing an unpredictable evolution. Each Drongos 
i performance is pronounced by a care possibility. Consequently, an unpredicta-
ble value consistently disseminated between 0 and 1. If ir  is improved than  
or equivalent to care possibility, show 1 is applied, if not state 2 is designated. 
Then care possibility is replaced by a vibrant care possibility for enrichment, 
which is adapted by the aptness supremacy of every contender solution. Lévy 
flights are employed as a substitute of unswerving illogical activities to duplicate 
the dodging performance. Accordingly, a novel capricious location , 1i kZ  
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is produced, in addition to the current location ,i jZ  from calculated Lévy flight 
Lf. Through Mantegna procedure, the main segment is to evaluate the stage size 
Si. In ELMDS algorithm input weight rate and concealed layer inception in ELM 
are logically optimized by the DS algorithm. Convergence characteristics show 
the better performance of the proposed ELMDS algorithm. Valuation of power 
loss has been done with other customary reported algorithms. 
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