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Abstract Keywords 
In this paper Enhanced Russian Haliaeetus pelagicus 
Optimization Algorithm is applied for solving the Pow-
er loss lessening problem. Russian Haliaeetus pelagicus 
Optimization Algorithm is modeled based on the natu-
ral deeds of Russian Haliaeetus pelagicus. A spiral tra-
jectory for exploration and a straight-line lane for as-
sails done by Russian Haliaeetus pelagicus for hunting. 
It shows proclivity to sail in preliminary phase of hunt-
ing and efficiently changeover to further proclivity to 
assail in the concluding phases. Russian Haliaeetus 
pelagicus conserve proclivity for both sail and assail in 
each instant of the voyage. Sail vector is computed 
based on the assail vector. Sail vector is a tangent to the 
loop and vertical to the assail vector. The sail can be 
linear pace of Russian Haliaeetus pelagicus in compari-
son the prey. The sail vector in n-dimensions is situated 
within the tangent plane in loop in order compute the 
sail vector. In Enhanced Russian Haliaeetus pelagicus 
Optimization Algorithm exterior archive, prey prece-
dence condition, and picking of prey are added through 
multi-objective mode. The fundamental plan is to keep 
capable solutions in an exterior archive and modernize 
when procedure continues. Exploration agents are 
moved in the direction of the stored entities. If the new-
fangled solution is conquered by one or more of the 
present archives’ entities, then the new-fangled solution 
is removed. If the new-fangled solution is not ruled over 
the present entities of the stored one and the records are 
not occupied, basically append the new-fangled posi-
tion to the store. Prudence of the Enhanced Russian 
Haliaeetus pelagicus Optimization Algorithm is cor-
roborated in IEEE 30 bus system (with and devoid  
of L-index). True power loss lessening is reached. Ratio 
of true power loss lessening is augmented 
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Introduction. In power system diminishing of true power loss is an important 
feature. Abundant methods [1–6] and evolutionary approaches [7–16] are 
applied for solving power loss lessening problem. Carpentier [1] has done the 
work on “Contribution à l’étude du dispatching économique”. Dommel et al. [2] 
did research on optimal power flow solutions. Takapoui et al. [3] did work on a 
simple effective heuristic for embedded mixed-integer quadratic programming. 
Abaci et al. [4] solved the optimal reactive-power dispatch using differential 
search algorithm. Pulluri et al. [5] worked on an enhanced self-adaptive 
differential evolution-based solution methodology for multi-objective optimal 
power flow. Heidari et al. [6] used Gaussian barebones water cycle algorithm for 
optimization Every Russian Haliaeetus pelagicus arbitrarily choose al reactive 
power dispatch in electrical power systems. Keerio et al. [7] solved Multi-
Objective Optimal Reactive Power Dispatch Considering Probabilistic Load 
Demand Along with Wind and Solar Power Integration. Roy et al. [8] solved the 
Optimal Reactive Power Dispatch for Voltage Security using JAYA Algorithm. 
Mugemanyi et al. [9] solved the Optimal Reactive Power Dispatch Using 
Chaotic Bat Algorithm. Sahli et al. [10] solved Hybrid PSO-tabu search for the 
optimal reactive power dispatch problem. Mouassa et al. [11] used Ant lion 
optimizer for solving optimal reactive power dispatch problem in power 
systems. Mandal et al. [12] solved Optimal reactive power dispatch using quasi-
oppositional teaching learning-based optimization. Khazali et al. [13] solved the 
Optimal reactive power dispatch based on harmony search algorithm. Tran et al. 
[14] did Finding optimal reactive power dispatch solutions by using a novel 
improved stochastic fractal search optimization algorithm. Polprasert et al. [15] 
solved the optimal reactive power dispatch using improved pseudo-gradient 
search particle swarm optimization. Thanh Long Duong et al. [16] solved 
Optimal Reactive Power Flow for Large-Scale Power Systems Using an Effective 
Metaheuristic Algorithm. On the other hand many procedures are unsuccessful 
to touch the global optimal solution. In this paper Enhanced Russian Haliaeetus 
pelagicus Optimization Algorithm (ERHOA) is applied for solving the power 
loss lessening problem. Russian Haliaeetus pelagicus Optimization Algorithm 
(RHOA) is designed based on the natural actions of Russian Haliaeetus 
pelagicus. A helix gesticulation will be performed during hunting. Russian 
Haliaeetus pelagicus should select a prey to carry out the sail and assail function 
in all iterations. Prey is scientifically modelled based on the most excellent 
solutions found by the group of Russian Haliaeetus pelagicus and it will 
remember the most excellent solution obtained so far. Every exploration agent 
chooses a goal prey from the reminiscence of the entire group. Assail and sail 
vectors for every Russian Haliaeetus pelagicus are then computed in comparison 
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the chosen prey. If the new-fangled location is improved than the preceding 
location in the reminiscence, then the reminiscence is rationalized. Every Russian 
Haliaeetus pelagicus arbitrarily chooses its prey in the present iteration from the 
reminiscence of any other group associate. It is notable that the chosen prey is not 
essentially to be adjacent or farthest away. Every prey in the reminiscence 
is allocated or charted to one Russian Haliaeetus pelagicus. Naturally most 
excellent location visited so far is memorized by Russian Haliaeetus pelagicus.  
It concomitantly has lure in the direction of attack and on route for sail to explore 
for superior prey. The fundamentals of the acquired goal spot are arbitrary figures 
among 0 and 1. It is notable that the sail vector draws the population of Russian 
Haliaeetus pelagicus in the direction of the region, which is not in the recorded 
memory. In ERHOA exterior archive, prey precedence condition, and picking  
of prey are added through multi-objective mode. The fundamental plan is to keep 
capable solutions in an exterior archive and modernize when procedure 
continues. Exploration agents are moved in the direction of the stored entities.  
If the new-fangled solution is conquered by one or more of the present archive 
entities then the new-fangled solution is removed. Crowding distance value  
is computed for the stored entities. The departing entity is chosen by roulette 
wheel selection method, in which the possibility is comparative to value  
of crowding distance. Prey chosen by a method based on roulette wheel, in which 
the sparsity counts of the present stored entities are weights and it consequences  
an elevated possibility for choosing the entities in the area of the facade and less 
possibility for stored entities in the intense areas. Rationality of ERHOA  
is confirmed by corroborating in IEEE 30 bus system (with and devoid  
of  L-index). True power loss lessening is achieved. Proportion of true power loss 
reduction is augmented. 

Problem formulation. Power loss minimization is defined by min  , ,F d e  
where min  is minimization of power loss. 

Subject to the constraints 

 
, 0,A d e

 
, 0.B d e

 
Here   ,     d e  are control and dependent variables,  

 1 1 1, , ; , , ; , , ,g c TN N Nd VLG VLG QC QC T T  

 1 1 1; , , ; , , ; , , ,L g Tslack N N Ne PG VL VL QG QG SL SL  

where    QС  is reactive power compensators; T is a tap setting of transformers; 
 gVL  is level of the voltage; slackPG  is slack generator; VL  is voltage on trans-

mission lines; QG  is generation unit’s reactive power; SL  is apparent power. 
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The fitness function 1 2 3, ,F F F  is designed for power loss lessening 
(MW), voltage deviancy, voltage constancy index (L-index) is defined by 
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where TLN  is number of transmission line;   kVL  is load voltage in k-th load 
bus; desired

kVL  is voltage desired at the k-th load bus; KQG  is reactive power 
generated at k-th load bus generators;   Lim
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where MOF — multi-objective fitness; ir  is control variables; u is dependent 
variables. 

Russian Haliaeetus pelagicus Optimization Algorithm. Russian Haliaee-
tus pelagicus Optimization Algorithm is designed based on the spiral motion  
of Russian Haliaeetus pelagicus. Naturally most excellent location visited so far 
is remembered by Russian Haliaeetus pelagicus. It concurrently has lure in the 
direction of attack and on route for sail to explore for superior prey. 

Russian Haliaeetus pelagicus follow a spiral trajectory for exploration and  
a straight line lane for assail. It shows proclivity to sail in preliminary phase  
of hunting and efficiently changeover to further proclivity to assail in the con-
cluding phases. Russian Haliaeetus pelagicus conserve proclivity for both sail 
and assail in each instant of the voyage. Information about the prey will  
be shared among the Russian Haliaeetus pelagicus’s. 

Russian Haliaeetus pelagicus “i” arbitrarily choose the prey in iterations  
of an additional Russian Haliaeetus pelagicus “f”. It loops in the region of the 
most excellent location visited by Russian Haliaeetus pelagicus “f”. Russian 
Haliaeetus pelagicus “i” chooses the loop based on its individual memory and  
it defined as 

 1, 2, 3, ,   .f Population size  
Russian Haliaeetus pelagicus should select a prey to carry out the sail and 

assail function in all iterations. Prey is scientifically modeled based on the most 
excellent solutions found by the group of Russian Haliaeetus pelagicus and  
it will remember the most excellent solution obtained so far. 

Every exploration agent chooses a goal prey from the reminiscence of the 
entire group. Assail and sail vectors for every Russian Haliaeetus pelagicus are 
then computed in comparison the chosen prey. If the new-fangled location  
is improved than the preceding location in the reminiscence, then the 
reminiscence is rationalized. Every Russian Haliaeetus pelagicus arbitrarily 
choose its prey in the present iteration from the reminiscence of any other group 
associate. It is notable that the chosen prey is not essentially to be adjacent  
or farthest away. Every prey in the reminiscence is allocated or charted to one 
Russian Haliaeetus pelagicus. 
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The assail (exploitation phase) is modelled by a vector starting from the 
present position and end in the location of the prey in the Russian Haliaeetus 
pelagicus memory: 

 * ,Assail   i i iA H H    (1) 

where *iH  is the most excellent loation visited by Russian Haliaeetus pelagicus; 
iH  is the present position of Russian Haliaeetus pelagicus. 

Sail vector is computed based on the assail vector. Sail vector is a tangent  
to the loop and vertical to the assail vector. The sail can be linear pace of Russian 
Haliaeetus pelagicus in comparison the prey. The sail vector in n-dimensions  
is situated within the tangent plane in loop in order compute the sail vector: 
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Arbitrarily pick one variable out of  “n” parameters as the unchanging  
variable. Directory of the chosen parameter is k. Then the unchanging is defined 
as 
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At this point that the goal point is defined, the sail vector is computed  
for the Russian Haliaeetus pelagicus “i” in the iteration “t”. The fundamentals  
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of the acquired goal spot are arbitrary figures among 0 and 1. It is notable that 
the sail vector draws the population of Russian Haliaeetus pelagicus in the 
direction of the region which is not in the recorded memory; consequently,  
it accentuate the exploration segment. 

The dislodgments of the Russian Haliaeetus pelagicus encompass of assail 
and sail vector. Russian Haliaeetus pelagicus step vector in “i” th iteration “t” 
is defined as 

 1 2 ,i it ti
ii

a с
A Uh Rand s Rand s

UA
  (11) 

where tas  is assail coefficient in iteration “t”; tcs  is sail coefficient in iteration 
“t”; 
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1
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n
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In iteration t + 1 the position of Russian Haliaeetus pelagicus is computed by 

 1 .t t t
ih h h   (14) 

If the fitness of Russian Haliaeetus pelagicus “i” new-fangled position  
is better than the position with reference to its memory, then it replaced. Or else, 
the memory relics as integral part, but Russian Haliaeetus pelagicus will exist  
in the new-fangled position. In the new-fangled iteration, Every Russian 
Haliaeetus pelagicus arbitrarily pick a Russian Haliaeetus pelagicus from the 
population to the loop in the region of most excellent visited position, compute 
assail, sail vector and lastly step vector with new-fangled position for the 
subsequent iteration. This circle is implemented in anticipation of satisfying  
the end condition. 

Russian Haliaeetus pelagicus demonstrate a superior proclivity to sail in the 
preliminary phase of the hunting voyage and illustrate an elevated proclivity  
to assail in the concluding phase, which match up to additional exploration  
in preliminary iterations and extra exploitation in the concluding iterations. 

The procedure begins with small  as  and elevated .us When iterations pro-
gress, as  is regularly amplified while us  is steadily reduced and t defined  
as follows: 
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0 0

0 0

,

,

Ta a a a

Tu u u u

ts s s s
T
ts s s s
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      (15) 

where t, T are current and maximum iterations; 0 ,  Ta as s  are preliminary  
and final values; 0 , Tu us s  are preliminary and final values. 

Algorithm 

a. Start 
b. Initialize the Russian Haliaeetus pelagicus population 
c. Estimate the fitness function  
d. Initialize the memory of the Russian Haliaeetus pelagicus population  
e. Initialize ,as  us  
f. For each iteration “t” 
g. Update as  and us  
h. Formula (15) 
i. For each Russian Haliaeetus pelagicus “t” 
j. Arbitrarily choose a prey from the memory of the Russian Haliaeetus  

pelagicus population 
k. Compute assail vector 
l. Formula (1)  
m. If assail vector’s extent (1) is not equivalent to zero 
n. Compute the sail vector  
o. (2) 
p. (3) 
q. (4) 
r. (5) 
s. (6) 
t. (7) 
u. (8) 
v. (9) 
w. (10) 
x. Calculate the step vector 
y.  (11) 
z.  (12) 
aa.  (13) 
bb.  (14)  
cc. Modernize the position  
dd.  (14)  
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ee. Calculate fitness value for the new-fangled position 
ff. If fitness is superior to the Russian Haliaeetus pelagicus “i” positions fit-

ness value memory 
gg.  Swap the new-fangled position with the Russian Haliaeetus pelagicus 

“i” memory 
hh.  Update 1t t  
ii. End 

In the ERHOA exterior archive, prey precedence condition, and picking  
of prey are included through multi-objective mode. The fundamental plan is to 
keep capable solutions in an exterior archive and modernize when procedure 
continues. Exploration agents are moved in the direction of the stored entities.  
If the new-fangled solution is conquered by one or more of the present archive 
entities then the new-fangled solution is removed. If the new-fangled solution  
is not ruled over the present entities of the stored one and the records are not 
occupied, basically append the new-fangled position to the store. If the new-
fangled position is not ruled over the present entities of the stored one then 
arbitrarily choose one of the stored entities and replace with new-fangled 
solution. An appraisal is required to define the concentration of the close  
to region for every entity of the stored one. Crowding distance included and 
defined by [17–23]: 

 1, , , 1,
max min

1 ,i j i j i j i j
i

j J j j

f f f f
CD

n f f
  (16) 

where , 1, 1,,,    i j i j i jf f f  are the stored entities. 
Crowding distance value is computed for the stored entities. The departing 

entity is chosen by roulette wheel selection method, in which the possibility 
is comparative to value of crowding distance. The new-fangled counts   iSC  
are used for the roulette wheel process is defined as  
 1 .i iSC CD   (17) 

Prey chosen by a method based on roulette wheel, in which the sparsity counts 
of the present stored entities are weights and it consequences an elevated pos-
sibility for choosing the entities in the area of the facade and less possibility  
for stored entities in the intense areas. 

Algorithm 

a. Start  
b. Initialize the Russian Haliaeetus pelagicus population 
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c. Estimate the fitness function 
d. Initialize the memory of the Russian Haliaeetus pelagicus population 
e. Initialize ,as  us  
f. For each iteration “t” 
g. Update as  and us  
h. Formula (15) 
i. For each Russian Haliaeetus pelagicus “t” 
j. Arbitrarily choose a prey from the memory of the Russian Haliaeetus  

pelagicus population  
k. Compute assail vector 
l. (1)  
m. If assail vector’s extent (215) is not equivalent to zero 
n. Compute the sail vector  
o. (2)  
p. (3)  
q. (4)  
r. (5)  
s. (6)  
t. (7)  
u. (8)  
v. (9)  
w. (10)  
x. Calculate the step vector 
y.  (11)  
z.  (12)  
aa.  (13)  
bb.  (14)  
cc. Modernize the position  
dd.  (14)  
ee. Calculate fitness value for the new-fangled position 
ff. If the new-fangled position is not conquered the present stored entities 
gg. If the exterior store is not occupied  
hh. Append the new-fangled solution to the store 
ii. Otherwise  
jj. Compute the expanse  
kk. (16) 
ll. (17)  
mm.  Departing entity is chosen by roulette wheel selection method  
nn. Swap the departing solution with the new-fangled one 
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oo. Update 1t t  
pp. End 
 
Simulation results. With considering L-index (voltage stability), RHOA 

and ERHOA is substantiated in IEEE 30 bus system [24]. Appraisal of loss has 
been done with PSO, amended PSO, enhanced PSO, widespread learning PSO, 
Adaptive Genetic Algorithm, Canonical Genetic Algorithm, Enriched Genetic 
Algorithm, Hybrid PSO-Tabu search (PSO-TS), Ant Lion (ALO), Quasi-
Oppositional Teaching Learning Based (QOTBO), Improved Stochastic Fractal 
Search Optimization Algorithm (ISFS), Harmony Search (HS), Improved 
Pseudo-Gradient Search Particle Swarm Optimization and Cuckoo Search 
algorithm. Power loss abridged competently and proportion of the power loss 
lessening has been enriched. Predominantly voltage constancy enrichment 
achieved with minimized voltage deviancy. In Table 1 shows the loss appraisal, 
Table 2 shows the voltage deviancy evaluation and Table 3 gives the L-index 
assessment. Figures 1 to 3 gives graphical appraisal. 

Table 1 

Assessment of true power loss lessening 

Technique True power loss, 
MW Technique True power loss, 

MW 

Standard PSO-TS [10] 4.5213 Standard PSO [13] 4.9239 
Basic TS [10] 4.6862 HAS [13] 4.9059 
Standard PSO [10] 4.6862 Standard FS [14] 4.5777 
ALO [11] 4.5900 ISFS [14] 4.5142 
QOTLBO [12] 4.5594 Standard FS [16] 4.5275 
TLBO [12] 4.5629 RHOA 4.5004 
Standard GA [13] 4.9408 ERHOA 4.4986 

 
The appraisal of power loss and assessment done with Basic PSO-TS, 

Standard TS, Basic PSO, ALO [11], Basic QOTLBO, Standard TLBO [12], 
Standard GA, Basic PSO, HAS [13], Standard FS, ISFS [14] and Standard FS [16] 
show in Table 1 and Fig. 1. 

The evaluation of voltage deviancy and assessment done with Basic PSO-
TVIW, Basic PSO-TVAC, Standard PSO-TVAC, Basic PSO-CF, PG-PSO, 
SWT-PSO, PGSWT-PSO, MPG-PSO, QO-TLBO, TLBO [12], Standard FS, 
ISFS [14] and Standard FS [16] show in Table 2 and Fig. 2. 
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Fig. 1. Appraisal of factual power loss 
 

Table 2 

Evaluation of voltage deviation 

Technique Voltage deviation, 
PU Technique Voltage deviation, 

PU 

Standard PSO-TVIW [15] 0.1038 QOTLBO [12] 0.0856 

Standard PSO-TVAC [15] 0.2064 / 0.1354 TLBO [12] 0.0913 

Standard PSO-CF [15] 0.1287 Standard FS [14] 0.1220 

PG-PSO [15] 0.1202 ISFS [14] 0.0890 

SWT-PSO [15] 0.1614 Standard FS [16] 0.0877 

PGSWT-PSO [15] 0.1539 RHOA 0.0846 

MPG-PSO [15] 0.0892 ERHOA 0.0837 
 
The voltage constancy and assessment done with Basic PSO-TVIW, Basic 

PSO-TVAC, Standard PSO-TVAC, Basic PSO-CF, PG-PSO, SWT-PSO, 
PGSWT-PSO, MPG-PSO [15], QOTLBO, Standard TLBO [12], ALO, ABC, 
Standard GWO, Basic BA [11], Standard FS, ISFS [14] and Standard FS [16] 
show in Table 3 and Fig. 3. 

Then Projected RHOA and ERHOA are corroborated in IEEE 30 bus test 
system deprived of L-index. Loss appraisal is shown in Table 4. Figure 4 gives 
graphical appraisal between the approaches with orientation to true power  
loss. 
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Fig. 2. Appraisal of voltage deviation 

Table 3 

Assessment of voltage constancy 

Technique Voltage constancy, 
PU Technique Voltage constancy, 

PU 

Standard PSO-TVIW [15] 0.1258 ALO [11] 0.1161 

Standard PSO-TVAC [15] 0.1499 / 0.1271 ABC [11] 0.1161 

Standard PSO-CF [15] 0.1261 GWO [11] 0.1242 

PG-PSO [15] 0.1264 BA [11] 0.1252 

Standard WT-PSO [15] 0.1488 Basic FS [14] 0.1252 

PGSWT-PSO [15] 0.1394 ISFS [14] 0.1245 

MPG-PSO [15] 0.1241 S-FS [16] 0.1007 

QOTLBO [12] 0.1191 RHOA 0.1003 

TLBO [12] 0.1180 ERHOA 0.1000 
 
The actual power loss appraisal for IEEE 30 bus system without consider-

ing voltage constancy and assessment done with base case value, M-PSO [24], 
Basic PSO [23], EP [21], Standard GA [22], PSO [25], DEPSO [25] and JAYA 
[25] show in Table 4 and Fig. 4. 

The convergence characteristics of RHOA and ERHOA show in Table 5. 
Figure 5 shows the graphical representation of the characteristics. 
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Fig. 3. Appraisal of voltage constancy 
Table 4 

Assessment of true power loss 

Parameter True power loss, MW Proportion of lessening in power loss 

Base case value [28] 17.5500 0 
Amended PSO[28] 16.0700 8.40000 
Standard PSO [27] 16.2500 7.40000 
Standard EP [25] 16.3800 6.60000 
Standard GA [26] 16.0900 8.30000 
Basic PSO [29] 17.5246 0.14472 
DEPSO [29] 17.5200 0.17094 
JAYA [29] 17.5360 0.07977 
RHOA 14.0900 19.7150 
ERHOA 13.8900 20.8547 

 

Fig. 4. Appraisal of true power loss: 
1 is factual power loss, MW; 2 is proportion of lessening in power loss 
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Table 5 
Convergence characteristics 

Technique True power loss  
with / without L-index, MW 

Time  
with / without L-index, s 

Number of iterations  
with / without L-index 

RHOA 4.5004 14.09 19.60 16.02 29 25 
ERHOA 4.4986 13.89 21.05 17.99 33 29 

 

 

Fig. 5. Convergence characteristics of RHOA and ERHOA 
 
Conclusion. Russian Haliaeetus pelagicus Optimization Algorithm and 

ERHOA abridged the power loss competently. Russian Haliaeetus pelagicus 
should select a prey to carry out the sail and assail function in all iterations. Prey 
is scientifically modelled based on the most excellent solutions found by the 
group of Russian Haliaeetus pelagicus and it remembered the most excellent so-
lution obtained so far. Every exploration agent chooses a goal prey from the 
reminiscence of the entire group. Assail and sail vectors for every Russian 
Haliaeetus pelagicus are then computed in comparison the chosen prey. If the 
new-fangled location is improved than the preceding location in the reminis-
cence, then the reminiscence is rationalized. Every Russian Haliaeetus pelagicus 
arbitrarily choose its prey in the present iteration from the reminiscence of any 
other group associate. It is notable that the chosen prey is not essentially to be 
adjacent or farthest away. Every prey in the reminiscence is allocated or charted 
to one Russian Haliaeetus pelagicus. Russian Haliaeetus pelagicus Optimization 
Algorithm is enhanced by adding the features: exterior archive, prey precedence 
condition, and picking of prey through multi-objective mode. The fundamental 
plan is to keep capable solutions in an exterior archive and modernize when 
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procedure continues. Exploration agents are moved in the direction of the 
stored entities. If the new-fangled solution is conquered by one or more of the 
present archive entities then the new-fangled solution is removed. If the new-
fangled solution is not ruled over the present entities of the stored one and the 
records are not occupied, basically append the new-fangled position to the store. 
If the new-fangled position is not ruled over the present entities of the stored 
one then arbitrarily choose one of the stored entities and replace with new-
fangled solution. An appraisal is required to define the concentration of the 
close to region for every entity of the stored one. Crowding distance value  
is computed for the stored entities. The departing entity is chosen by reselection 
method, in which the possibility is comparative to value of crowding distance. 
Prey is chosen by a method based on roulette wheel, in which the sparsity counts 
of the present stored entities are weights and it consequences an elevated possi-
bility for choosing the entities in the area of the facade and less possibility  
for stored entities in the intense areas. Convergence characteristics show the bet-
ter performance of the proposed ERHOA. Assessment of power loss has been 
done with other customary reported algorithms. 
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