УДК 521

О ПЕРИОДЕ ДВИЖЕНИЯ ПОЛЮСА ОСИ ВРАЩЕНИЯ УПРУГОЙ ЛУНЫ

М.Ю. Баркин	barkin@bmstu.ru
П.М. Шкапов	spm@bmstu.ru

МГТУ им. Н.Э. Баумана, Москва, Российская Федерация

Аннотация Ключевые слова Результаты исследования вращательного и посту-Луна, задача Лиувилля, пательно-вращательного движений вязкоупругой переменные Андуайе, грави-Земли и Луны приведены во многих работах. Однатационный потенциал, ко в основном изучена эволюция системы Земляупругость Луна. Для современных исследований Луны также важно изучить проявление упругих свойств Луны в ее физической либрации (в современную эпоху). В частности, актуальны исследования влияния жидкого и твердого ядер Луны, а также эластичности мантии Луны при ее вращательном движении с учетом высокоточного описания орбитального движения Луны и его резонансного характера. В настоящей работе выявлены значимые эффекты, которые должны приниматься во внимание при интерпретации результатов наблюдений. Для описания вращательного движения Луны использованы уравнения задачи Лиувилля в переменных Андуайе и теория возмущений. Показано, что учитывающая упругие свойства Луны модель приводит к существенному удлинению периода колебаний ее полюса по сравнению с периодом для классической модели твердой Луны. Для сравнения даны значения чандлеровских периодов, рассчитанные по представленным в работе формулам. Результаты проведенных Поступила 20.05.2022 исследований актуальны для обновленной россий-Принята 01.07.2022 ской лунной программы на период 2021-2040 гг. © Автор(ы), 2022

Введение. Исследуем динамическую роль упругости Луны в движении полюса ее оси вращения без учета влияния жидкого и твердого ядер Луны на ее либрации. Для описания вращательного движения Луны используем уравнения задачи Лиувилля в переменных Андуайе и теорию возмущений (метод малого параметра). Модель Луны представляет собой

слабодеформируемое тело, испытывающее деформации вследствие собственного вращения и гравитационного притяжения Земли. Предположим, что в процессе движения небесного тела перемещения частиц относительно начальных положений достаточно малы. Полагаем, что тело имеет внутреннюю твердую и внешнюю деформируемую оболочки. Проведенные исследования и полученные результаты актуальны ввиду обновленной российской лунной программы на период 2021–2040 гг., одной из основных целей которой является исследование внутреннего строения и динамики Луны.

Постановка задачи. Введем две прямоугольные декартовы системы координат (рисунок):

1) Сξηζ, жестко связанная с твердой оболочкой;

2) *Схуг* с началом в центре масс Луны, сохраняющая постоянное направление осей в пространстве.

Основные системы координат (а) и переменные Андуайе (б)

Введем переменные Андуайе: G, θ , ρ , l, g, h. Подробное описание переменных Андуайе приведено во многих работах, см., например, [1, 2].

Переменные, связанные с вектором кинетического момента **G**, определяются соотношениями $L = \mathbf{G} \cdot \mathbf{k}_b$, $G = \mathbf{G} \cdot \mathbf{k}_G$, $H = \mathbf{G} \cdot \mathbf{k}_s$ или $L = G \cos \theta$, $G = |\mathbf{G}|$, $H = G \cos \rho$.

В системе координат $C\xi\eta\zeta$ вектор кинетического момента тела определяется по формуле $\mathbf{G} = G_{\xi}\mathbf{i}_{b} + G_{\eta}\mathbf{j}_{b} + G_{\zeta}\mathbf{k}_{b}$, его проекции — по формулам

$$G_{\xi} = Ap - Fq - Er + P,$$

$$G_{\eta} = -Fp + Bq - Dr + Q,$$

$$G_{\zeta} = -Ep - Dq + Cr + R.$$
(1)

Осевые и центробежные моменты инерции в (1) могут быть представлены в виде суммы двух слагаемых:

$$A = A_0 + \delta A(t), \quad B = B_0 + \delta B(t), \quad C = C_0 + \delta C,$$
$$D = D_0 + \delta D(t), \quad E = E_0 + \delta E(t), \quad F = F_0 + \delta F(t),$$

где A_0 , B_0 , C_0 , D_0 , E_0 , F_0 — некоторые невозмущенные значения компонент тензора инерции тела, соответствующие недеформированному состоянию тела; $\delta A(t)$, $\delta B(t)$, $\delta C(t)$, $\delta D(t)$, $\delta E(t)$, $\delta F(t)$ — возмущающие добавки к компонентам тензора за счет смещений частиц тела и соответствующих вариаций плотности.

Компоненты кинетического момента (1) в переменных Андуайе определяются по формулам [2]:

$$G_{\xi} = \mathbf{G}\mathbf{k}_{b} = G\mathbf{k}_{G}\mathbf{i}_{b} = G\sin\theta\sin l = \sqrt{G^{2} - L^{2}}\sin l,$$

$$G_{\eta} = \mathbf{G}\mathbf{j}_{b} = G\mathbf{k}_{G}\mathbf{j}_{b} = G\sin\theta\cos l = \sqrt{G^{2} - L^{2}}\cos l,$$

$$G_{\ell} = \mathbf{G}\mathbf{k}_{h} = G\mathbf{k}_{G}\mathbf{k}_{h} = G\cos\theta = L.$$

Выполним переход от моментов инерции к коэффициентам второй гармоники гравитационного потенциала по формулам [3]:

$$J_{2} = -C_{20} = \frac{2C - A - B}{2mr_{0}^{2}}, \quad C_{22} = \frac{B - A}{4mr_{0}^{2}},$$
$$S_{22} = \frac{F}{2mr_{0}^{2}}, \quad C_{21} = \frac{E}{mr_{0}^{2}}, \quad S_{21} = \frac{D}{mr_{0}^{2}}.$$

После преобразования:

$$A - B = -4C_{22}mr_0^2, \quad A - C = (C_{20} - 2C_{22})mr_0^2,$$

$$B - C = (C_{20} + 2C_{22})mr_0^2, \quad (2)$$

$$F = 2S_{22}mr_0^2, \quad E = C_{21}mr_0^2, \quad D = S_{21}mr_0^2.$$

Введем безразмерный полярный момент инерции $I = C / (mr_0^2)$, тогда из (2) получим выражения для моментов инерции:

$$A = (I + C_{20} - 2C_{22}) mr_0^2, \quad B = (I + C_{20} + 2C_{22}) mr_0^2, \quad C = Imr_0^2.$$

Вследствие деформаций Луны коэффициенты второй гармоники геопотенциала имеют временные вариации:

О периоде движения полюса оси вращения упругой Луны

$$\delta J_{2} = -\delta C_{20} = \frac{2\delta C - \delta A - \delta B}{2mr_{0}^{2}}, \quad \delta C_{22} = \frac{\delta B - \delta A}{4mr_{0}^{2}}, \\ \delta S_{22} = \frac{\delta F}{2mr_{0}^{2}}, \quad \delta C_{21} = \frac{\delta E}{mr_{0}^{2}}, \quad \delta S_{21} = \frac{\delta D}{mr_{0}^{2}}.$$
(3)

Шаровой момент инерции относительно центра Луны не меняется при произвольных приповерхностных перераспределениях масс в тонком шаровом слое, следовательно, справедливо соотношение

$$\delta A + \delta B + \delta C = 0. \tag{4}$$

Из (3) и (4) получим

$$\frac{\delta A}{C} = -\frac{2}{J} \delta C_{22} - \frac{1}{3J} \delta J_2, \quad \frac{\delta B}{C} = \frac{2}{J} \delta C_{22} - \frac{1}{3J} \delta J_2, \quad \frac{\delta C}{C} = \frac{2}{3J} \delta J_2,$$
$$\frac{\delta F}{C} = \frac{2}{J} \delta S_{22}, \quad \frac{\delta E}{C} = \frac{1}{J} \delta C_{21}, \quad \frac{\delta D}{C} = \frac{1}{J} \delta S_{21}.$$

Запишем канонические уравнения в переменных Андуайе, описывающие вращательное движение деформируемой Луны [2]:

$$\frac{dl}{dt} = \frac{\partial K}{\partial L}, \quad \frac{dL}{dt} = -\frac{\partial K}{\partial l},$$
$$\frac{dg}{dt} = \frac{\partial K}{\partial G}, \quad \frac{dG}{dt} = -\frac{\partial K}{\partial g},$$
$$\frac{dh}{dt} = \frac{\partial K}{\partial H}, \quad \frac{dH}{dt} = -\frac{\partial K}{\partial h}.$$

Гамильтониан задачи [1]:

$$K = \frac{1}{2} G^2 \left\{ \left(a \sin^2 l + b \cos^2 l - f \sin 2l \right) \sin^2 \theta + c \cos^2 \theta - \sin 2\theta \left(e \sin l + d \cos l \right) \right\} - G \left[\left(\Omega_{\xi} \sin l + \Omega_{\eta} \cos l \right) \sin \theta + \Omega_{\zeta} \cos \theta \right] - U \left(L, G, H, l, g, h, t \right).$$

Здесь

$$a = \frac{BC - D^2}{\Delta}; \ b = \frac{AC - E^2}{\Delta}; \ c = \frac{AB - F^2}{\Delta};$$
$$d = -\frac{ED + FC}{\Delta}; \ e = -\frac{DF + BE}{\Delta}; \ f = -\frac{FE + AD}{\Delta};$$
$$\Delta = ABC - AD^2 - BE^2 - CF^2 - 2DEF;$$

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2022. № 5

7

М.Ю. Баркин, П.М. Шкапов

$$\sin \theta = \frac{\sqrt{G^2 - L^2}}{G}; \quad \cos \theta = \frac{L}{G}; \quad \sin \rho = \frac{\sqrt{G^2 - H^2}}{G}; \quad \cos \rho = \frac{H}{G}$$

Удлинение периода свободного движения полюса Луны вследствие ее упругости. Для оценки периода колебаний полюса слабодеформируемой Луны в результате ее вращательной деформации используем метод, предложенный в [4, 5] для оценок периодов чандлеровских колебаний полюсов Земли и Марса. Согласно этому методу, вращательное движение твердой и слабодеформируемой Луны приближенно можно описать одним и тем же гамильтонианом (записанным в переменных Андуайе), если изменить главные моменты инерции твердой модели на близкие значения при специальной коррекции. Если в первом случае (твердая Луна) гамильтониан задачи о вращательном движении имеет вид

$$K = \frac{G^2 - L^2}{2} \left(\frac{\sin^2 l}{A} + \frac{\cos^2 l}{B} \right) + \frac{L^2}{2C} - U,$$

то во втором (слабодеформируемая Луна) гамильтониан сохраняет общую форму:

$$K_0 = \frac{G^2 - L^2}{2} \left(\frac{\sin^2 l}{A} + \frac{\cos^2 l}{B} \right) + \frac{L^2}{2C}$$

Здесь

A = A + 3D_{\omega}; B = B + 3D_{\omega}; C = C; D_{\omega} = k₂
$$\frac{a_e^5 \omega_0^2}{9f}$$
,

где k_2 — число Лява; a_e — экваториальный радиус Луны; ω_0 — невозмущенное значение угловой скорости вращения Луны; f — гравитационная постоянная.

Во втором случае осевые момены инерции тела испытывают определенные постоянные приращения. Так, в системе координат $C\omega_1\omega_2\omega_3$, связанной с вектором угловой скорости (ось $C\omega_3$ направлена вдоль вектора ω), компоненты тензора инерции экваториальных утолщений Земли, вызванных ее вращательной деформацией, определяются по формулам [6]: $A_{\omega} = B_{\omega} = D_{\omega}$; $C_{\omega} = 2D_{\omega}$. Для приращения полярного момента инерции Луны, обусловленного ее вращательной деформацией, можно использовать соотношение

$$2D_{\omega} = \Delta C_M = \frac{2}{9} k_2 \frac{a_e^5 \omega_0^2}{f} = \frac{2}{9} k_2 \frac{m_M r_M^2}{m_M f} \frac{a_e^2}{r_M^2} \omega_0^2 a_e^3.$$
(5)

8

В соответствии с результатами наблюдений [7, 8] имеем следующие значения параметров Луны:

$$k_{2} = 0,024, \quad C = 0,873486 \cdot 10^{42} \text{ } \Gamma \cdot \text{cm}^{2},$$

$$\frac{1}{m_{M}f} \omega_{0}^{2} a_{e}^{3} = 9,377115 \cdot 10^{-6}, \quad \frac{a_{e}^{2}}{r_{M}^{2}} = 1,00171619. \tag{6}$$

Угловую скорость сопоставим с ее невозмущенным значением $\omega_0 = n_F$, n_F — угловая скорость изменения аргумента лунного орбитального движения *F*. Соответствующий период $T_F = 27,21222$ дня и указанное вращение соответствуют движению Луны по законам Кассини. Вариацию полярного момента инерции Луны, обусловленного ее вращательной деформацией, находим по (5), (6):

$$\Delta C_M = \frac{2}{9} k_2 C_M \frac{1,00171619}{0,39349} \frac{1}{m_M f} \omega_0^2 a_e^3 =$$

= 1,352754 \cdot 10^{-7} C_M = 1,181612 \cdot 10^{35} \ \mathbf{r} \cdot \cmathbf{cm}^2.

Можно утверждать, что упругая Луна, деформируемая собственным вращением, вращается как некоторое фиктивное (добавочное) твердое тело, но с измененными моментами инерции, т. е. упругая Луна (деформируемая собственным вращением) вращается по законам Эйлера — Пуансо [9, 10], но как некоторое другое свободное твердое тело, моменты инерции которого мало отличаются от главных моментов инерции *A*, *B* и *C* самой Луны. Опустим промежуточные выкладки и приведем окончательные выражения для чандлеровского периода движения полюса слабодеформируемой Луны как без учета гравитационного притяжения центрального небесного тела (Земли), так и с учетом гравитационного притяжения Земли и резонансных свойств возмущенного орбитального движения Луны:

$$T_q^* = \frac{T_F}{\sqrt{\left(\frac{B}{A} - 1\right)\left(\frac{B}{C} - 1\right)}},$$
(7)

9

$$T_q = \frac{T_F}{\sqrt{\left(\frac{B}{A} - 1 - \frac{1}{B\Omega^2} \frac{\partial^2 \langle \mathbf{U} \rangle}{\partial l^2}\right) \left(\frac{B}{C} - 1 - B \frac{\partial^2 \langle \mathbf{U} \rangle}{\partial L^2}\right)}}.$$
(8)

Здесь T_F — период суточного вращения небесного тела (вокруг своей оси). Формула (7) получена для свободного небесного тела, т. е. не подверженного гравитационному воздействию со стороны внешних небес-

ных тел. Формула (8) учитывает гравитационное влияние центрального внешнего тела (для Луны — Земля, для Земли и Марса — Солнце) посредством усредненного значения силовой функции его ньютоновского взаимодействия с рассматриваемой планетой $\langle \mathbf{U} \rangle$. При этом учитываются возмущения в орбитальном движении возмущающего тела. Значения гравитационных составляющих в выражении периода движения полюса вычислены для высокоточной орбиты Луны и составляют:

$$\frac{1}{B\Omega^2} \frac{\partial^2 \langle U \rangle}{\partial l^2} = -1830,440218 \cdot 10^{-6}, \quad B \frac{\partial^2 \langle U \rangle}{\partial L^2} = 0,184727 \cdot 10^{-6}. \tag{9}$$

При вычислении безразмерных величин (9) использованы коэффициенты второй гармоники селенопотенциала согласно современной модели, полученной при реализации проекта SELENE (Япония) [11, 12].

Вычисленные по приведенным формулам для Земли, Марса и Луны значения чандлеровских периодов представлены в таблице. Эйлеровский (T_{Eu}) и чандлеровский (T_{Ch}) периоды для Земли, Марса и Луны (первая, вторая и третья строки) определены по (7) для наблюдаемых значений моментов инерции A, B и C и для приведенных моментов инерции A, В и C. В расчетах не учтено гравитационное влияние центрального тела на движение полюса [13]. В четвертой строке таблицы приведены значения периодов T_{Eu} и T_{Ch} с учетом гравитационного вклада в движение полюса. Значения указанных периодов даны в сутках, разности периодов T_{Eu} и T_{Ch} — в сутках и процентах по отношению к значению периодов для неупругой планеты (или Луны).

Планета	T_{Eu} , сут	<i>T_{Ch}</i> , сут	ΔT_{Ch} , сут	ΔT_{Ch} , %
Земля	304,300	447,086	142,786	$46,92T_{Eu}$
Mapc	191,816	218,049	26,233	13,68 T_{Eu}
Луна*	53 922,70	53 944,95	22,70	$0,042T_{Eu}$
Луна	27 267,65	27 275,62	7,97	0,029 <i>T</i> _q
* Без учета силового взаимодействия.				

Влияние упругости на период движения полюса Луны и планет

Заключение. Следует отметить, что в случае Луны формула для периода (7) не применима для оценки периода свободного движения полюса Луны, поскольку дополнительные слагаемые в выражении (8) сравнимы по величине с первыми слагаемыми и фактически приводят к уменьшению периода движения полюса примерно в 2 раза [14, 15]. Изложенное хорошо согласуется со значениями периода колебаний полюса без учета силового взаимодействия и с его учетом (см. таблицу). Здесь приведены значения периодов Земли и Марса (для твердой и упругой моделей), которые возрастают на 47 и 14 % соответственно. Последние значения получены по (7), в которой не учитывается притяжение центрального тела. Теоретические результаты хорошо согласуются с результатами наблюдений. Например, с помощью радиоотслеживающих наблюдений Mars Odyssey, Mars Reconnaissance Orbiter и космического корабля Mars Global Surveyor обнаружено чандлеровское колебание Марса. Это впервые, когда чандлеровские колебания обнаружены на отличном от Земли планетарном теле. Амплитуда составляет 10 см, период — 206,9 \pm 0,5 дня [16]. Период T_{Ch} для Земли варьируется в пределах 416...433 дня, что также хорошо согласуется с полученными результатами. Таким образом, упругость планеты существенно влияет на период движения полюса оси вращения, а в случае Луны (синхронного спутника) это влияние является малым, но значимым для высокоточного описания ее вращения. Это важно для расчетов и реализации проектов по изучению ориентации Луны.

ЛИТЕРАТУРА

[1] Barkin Yu.V. Perturbated rotational motion of weakly deformable celestial bodies. *AApTr*, 2000, vol. 19, iss. 1, pp. 19–65.

DOI: https://doi.org/10.1080/10556790008241350

[2] Архангельский Ю.А. Аналитическая динамика твердого тела. М., Наука, 1977.

[3] Аксенов Е.П. Теория движения искусственных спутников Земли. М., Наука, 1977.

[4] Barkin Y.V., Hanada H., Matsumoto K., et al. Effects of a physical librations of the Moon caused by a liquid core, and determination of the fourth mode of a free libration. *Sol. Syst. Res.*, 2014, vol. 48, no. 6, pp. 403–419.

DOI: https://doi.org/10.1134/S003809461406001X

[5] Barkin Yu.V., Ferrandiz J.M. Elliptical Chandler pole motions of the Earth and Mars. *EGU General Assembly*, 2010, p. 2936.

[6] Манк У., Макдональд Г. Вращение Земли. М., Мир, 1964.

[7] Hanada H., Heki K., Araki H., et al. Application of a PZT telescope to In situ Lunar orientation Measurements (ILOM). In: Sansò F. (eds). *A Window on the Future of Geodesy. International Association of Geodesy Symposia*, vol. 128. Berlin, Heidelberg, Springer, 2005, pp. 163–168. DOI: https://doi.org/10.1007/3-540-27432-4_29

[8] Barkin Yu., Matsumoto K., Hanada H., et al. The influence of elastic properties of the Moon on its pole motion. *118th Meeting of the Geodetic Society of Japan*, 2012, pp. 149–150.

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2022. № 5 11

[9] Barkin M.Yu., Shkapov P.M., Hanada H. The physical librations of the Moon caused by its tidal deformations. *Herald of the Bauman Moscow State Technical University*, *Series Natural Sciences*, 2019, no. 2 (83), pp. 4–16.

DOI: http://dx.doi.org/10.18698/1812-3368-2019-2-4-16

[10] Barkin Yu.V., Ferrandiz J., Shuanggen J., et al. Cassini's motions of the Moon and Mercury and possible excitations of free librations. *Geod. Geodyn.*, 2018, vol. 9, iss. 6, pp. 474–484. DOI: https://doi.org/10.1016/j.geog.2018.01.005

[11] Matsumoto K., Goossens S., Ishihara Y., et al. An improved lunar gravity field model from SELENE and historical tracking data: revealing the far side gravity features. *J. Geophys. Res.*, 2010, vol. 115, iss. E6. DOI: https://doi.org/10.1029/2009JE003499

[12] Goossens S., Matsumoto K. Lunar degree 2 potential Love number determination from satellite tracking data. *Geophys. Res. Lett.*, 2008, vol. 35, iss. 2.DOI: https://doi.org/10.1029/2007GL031960

[13] Barkin Yu.V., Barkin M.Yu. Theory of physical libration of the Moon with the liquid core: forced librations. *Cosmic Res.*, 2016, vol. 54, no. 6, pp. 458–474. DOI: https://doi.org/10.1134/S0010952516060010

[14] Barkin Yu.V. Comparative rotational dynamics of the Moon, Mercury and Titan. *AApTr*, 2004, vol. 23, iss. 5, pp. 481–492.

DOI: https://doi.org/10.1080/10556790412331319659

[15] Araki H., Tazawa S., Noda H., et al. Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry. *Science*, 2009, vol. 323, no. 5916, pp. 897–900. DOI: https://doi.org/10.1126/science.1164146

[16] Konopliv A.S., Park R.S., Rivoldini A., et al. Detection of the chandler wobble of Mars from orbiting spacecraft. *Geophys. Res. Lett.*, 2020, vol. 47, iss. 21. DOI: https://doi.org/10.1029/2020GL090568

Баркин Михаил Юрьевич — канд. физ.-мат. наук, доцент кафедры «Теоретическая механика» МГТУ им. Н.Э. Баумана (Российская Федерация, 105005, Москва, 2-я Бауманская ул., д. 5, стр. 1).

Шкапов Павел Михайлович — д-р техн. наук, профессор, заведующий кафедрой «Теоретическая механика» МГТУ им. Н.Э. Баумана (Российская Федерация, 105005, Москва, 2-я Бауманская ул., д. 5, стр. 1).

Просьба ссылаться на эту статью следующим образом:

Баркин М.Ю., Шкапов П.М. О периоде движения полюса оси вращения упругой Луны. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2022, № 5 (104), с. 4–15. DOI: https://doi.org/10.18698/1812-3368-2022-5-4-15

ON THE MOTION PERIOD OF THE ROTATION AXIS POLE IN THE CASE OF AN ELASTIC MOON

M.Yu. Barkin P.M. Shkapov barkin@bmstu.ru spm@bmstu.ru

Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract	Keywords
Numerous studies present results of investigating the	Moon, Liouville problem,
rotational and translational-rotational motion of a vis-	Andoyer variables, gravitational
coelastic Earth and its Moon. However, they primarily	potential, elasticity
focus on the dynamics of the Earth-Moon system. Fur-	
ther contemporary studies of the Moon will necessarily	
involve investigating how the elastic properties of the	
Moon manifest in its physical libration (in the modern	
era). The following lines of research are particularly	
noteworthy: effects of the liquid and solid nuclei of the	
Moon, as well as the Moon mantle elasticity, on its rota-	
tional motion, taking into account a highly precise de-	
scription of the orbital motion of the Moon and the	
motion being driven by resonance. This paper identifies	
significant effects to be taken into account when inter-	
preting observation results. We used the Liouville prob-	
lem equations stated in Andoyer variables along with	
the perturbation theory to describe the rotational mo-	
tion of the Moon. We show that accounting for the	
elastic properties of the Moon in its model means that	
its pole oscillation period becomes significantly longer	
than the period yielded by the classic solid Moon model.	
The paper presents the Chandler period values for com-	
parison, calculated according to the formulas provided.	Received 20.05.2022
The investigation results are relevant to the updated	Accepted 01.07.2022
Russian lunar program for the 2021–2040 period	© Author(s), 2022

REFERENCES

[1] Barkin Yu.V. Perturbated rotational motion of weakly deformable celestial bodies. *AApTr*, 2000, vol. 19, iss. 1, pp. 19–65.

DOI: https://doi.org/10.1080/10556790008241350

[2] Arkhangelskiy Yu.A. Analiticheskaya dinamika tverdogo tela [Analitic rigid body dynamics]. Moscow, Nauka Publ., 1977.

[3] Aksenov E.P. Teoriya dvizheniya iskusstvennykh sputnikov Zemli [Motion theory of artificial Earth's satellites]. Moscow, Nauka Publ., 1977.

[4] Barkin Y.V., Hanada H., Matsumoto K., et al. Effects of a physical librations of the Moon caused by a liquid core, and determination of the fourth mode of a free libration. *Sol. Syst. Res.*, 2014, vol. 48, no. 6, pp. 403–419.

DOI: https://doi.org/10.1134/S003809461406001X

[5] Barkin Yu.V., Ferrandiz J.M. Elliptical Chandler pole motions of the Earth and Mars. *EGU General Assembly*, 2010, p. 2936.

[6] Munk W.H., Macdonald G.T.F. The rotation of the Earth. Univ. Press, 1960.

[7] Hanada H., Heki K., Araki H., et al. Application of a PZT telescope to In situ Lunar orientation Measurements (ILOM). In: Sansò F. (eds). *A Window on the Future of Geodesy. International Association of Geodesy Symposia*, vol. 128. Berlin, Heidelberg, Springer, 2005, pp. 163–168. DOI: https://doi.org/10.1007/3-540-27432-4_29

[8] Barkin Yu., Matsumoto K., Hanada H., et al. The influence of elastic properties of the Moon on its pole motion. *118th Meeting of the Geodetic Society of Japan*, 2012, pp. 149–150.

[9] Barkin M.Yu., Shkapov P.M., Hanada H. The physical librations of the Moon caused by its tidal deformations. *Herald of the Bauman Moscow State Technical University, Series Natural Sciences*, 2019, no. 2 (83), pp. 4–16.

DOI: http://dx.doi.org/10.18698/1812-3368-2019-2-4-16

[10] Barkin Yu.V., Ferrandiz J., Shuanggen J., et al. Cassini's motions of the Moon and Mercury and possible excitations of free librations. *Geod. Geodyn.*, 2018, vol. 9, iss. 6, pp. 474–484. DOI: https://doi.org/10.1016/j.geog.2018.01.005

[11] Matsumoto K., Goossens S., Ishihara Y., et al. An improved lunar gravity field model from SELENE and historical tracking data: revealing the far side gravity features. *J. Geophys. Res.*, 2010, vol. 115, iss. E6.

DOI: https://doi.org/10.1029/2009JE003499

[12] Goossens S., Matsumoto K. Lunar degree 2 potential Love number determination from satellite tracking data. *Geophys. Res. Lett.*, 2008, vol. 35, iss. 2. DOI: https://doi.org/10.1029/2007GL031960

[13] Barkin Yu.V., Barkin M.Yu. Theory of physical libration of the Moon with the liquid core: forced librations. *Cosmic Res.*, 2016, vol. 54, iss. 6, pp. 458–474 DOI: https://doi.org/10.1134/S0010952516060010

[14] Barkin Yu.V. Comparative rotational dynamics of the Moon, Mercury and Titan. *AApTr*, 2004, vol. 23, iss. 5, pp. 481–492.

DOI: https://doi.org/10.1080/10556790412331319659

[15] Araki H., Tazawa S., Noda H., et al. Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry. *Science*, 2009, vol. 323, no. 5916, pp. 897–900. DOI: https://doi.org/10.1126/science.1164146

[16] Konopliv A.S., Park R.S., Rivoldini A., et al. Detection of the chandler wobble of Mars from orbiting spacecraft. *Geophys. Res. Lett.*, 2020, vol. 47, iss. 21. DOI: https://doi.org/10.1029/2020GL090568

¹⁴ ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2022. № 5

Barkin M.Yu. — Cand. Sc. (Phys.-Math.), Assoc. Professor, Department of Theoretical Mechanics, Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, str. 1, Moscow, 105005 Russian Federation).

Shkapov P.M. — Dr. Sc. (Eng.), Professor, Head of the Department of Theoretical Mechanics, Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, str. 1, Moscow, 105005 Russian Federation).

Please cite this article in English as:

Barkin M.Yu., Shkapov P.M. On the motion period of the rotation axis pole in the case of an elastic Moon. *Herald of the Bauman Moscow State Technical University, Series Natural Sciences*, 2022, no. 5 (104), pp. 4–15 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2022-5-4-15