ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ КОЛЕБАНИЙ КАПЛИ ВОДЫ В ПОТОКЕ ВОЗДУХА ПРИ АКУСТИЧЕСКОМ ВОЗДЕЙСТВИИ

В.В. Володин¹ В.В. Голуб¹ А.Е. Ельянов¹ А.Ю. Микушкин^{1, 2} vlad@ihed.ras.ru golub@ihed.ras.ru elyanov14@physics.msu.ru mikushkin@bmstu.ru

¹ОИВТ РАН, Москва, Российская Федерация ²МГТУ им. Н.Э. Баумана, Москва, Российская Федерация

Аннотация

Ключевые слова

Приведены результаты исследования взаимодей-Колебания капли, воздушный ствия потока газа и капель жидкости. Подробно поток, акустическое воздейописана предлагаемая экспериментальная установствие, высокоскоростная ка. Изложены результаты экспериментального иссъемка, автоматизированследования колебаний капли диаметром 1,4 мм ная обработка изображений, в потоке воздуха со скоростью 3,1...10,0 м/с. С исспектр колебаний, неустойпользованием высокоскоростной камеры Phantom чивость Кельвина — Гельм-(частота съемки 2000 кадр/с) получены серии фотогольца графий капли в потоке воздуха через равные промежутки времени. Рассчитаны спектры свободных колебаний капли в газовом потоке, а также колебания под воздействием звуковых колебаний воздуха с частотой 0...1000 Гц и уровнем звукового давления 0...121 дБ. Обнаружены области параметров потока газа и акустического излучения, при которых происходит усиление или ослабление амплитуды колебаний капли. С использованием теории неустойчивости Кельвина — Гельмгольца проведен теоретический анализ взаимного влияния потока воздуха и акустического воздействия на каплю жидкости. Рассмотрены возможные значения числа Вебера капли в условиях эксперимента. Сделан вывод об отсутствии дробления капли под действием потока воздуха. Приведены значения частоты Поступила 05.04.2021 колебаний капли под действием потока воздуха, Принята 09.11.2021 при которых амплитуда колебаний постоянна © Автор(ы), 2022

Введение. Задачи взаимодействия потока газа и капель жидкости встречаются в различных направлениях науки и техники. В газовой динамике взаимное влияние газа и диспергированной в нем жидкости является ос-

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2022. № 1

57

новным фактором в задачах псевдоскачка [1–3]. Массообмен в газокапельных потоках происходит в двигателях внутреннего сгорания [4, 5], воздушно-реактивных двигателях [6], аппаратах химической промышленности [7, 8]. Теплообмен между потоком газа и каплями жидкости происходит в градирнях воздушного охлаждения рециркуляционной воды в промышленности и энергетике. Для оптимизации массогабаритных характеристик устройств, повышения экологичности и энергетической эффективности необходима интенсификация тепломассообменных процессов между газовой и жидкой фазами.

Одним из перспективных способов воздействия на двухфазную среду является возбуждение акустических колебаний в ней. Современные исследователи подвергают акустическому воздействию биологическую ткань [9], нефтеносный пласт [10, 11] или сельхозпродукты [12].

Цель работы — экспериментально исследовать влияние акустических колебаний на неподвижную каплю жидкости в потоке воздуха.

Расчет собственных частот колебаний капли. Для подбора акустических излучателей и средств управления частотой и интенсивностью акустического воздействия необходимо определить частоты собственных колебаний капель жидкости в окружающем газе. Для моделирования выбран диаметр капли, равный 1,4 мм, что соответствует среднему размеру капель в экспериментах, описанных в [7].

По формуле Рэлея [13] частота *n*-й гармоники колебаний капли

$$\nu = \sqrt{(n-1)n(n+2)} \sqrt{\frac{\sigma}{\rho R^3}},$$

где σ — коэффициент поверхностного натяжения границы раздела фаз; ρ — плотность капли; *R* — радиус капли.

Первая гармоника соответствует поступательному движению капли, поэтому колебания описываются гармониками со второй и выше. Капля воды диаметром 1,4 мм в воздухе характеризуется частотами собственных колебаний, представленными в табл. 1.

Таблица 1

Частоты собственных колебаний капли воды диаметром 1,4 мм в воздухе

Гармоника	2	3	4	5
Частота, кГц	1,84	3,57	5,53	7,71
Длина волны, мм	185,51	95,80	61,84	44,35

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2022. № 1

58

В экспериментальных условиях наиболее реализуемо возбуждение колебаний второй гармоники капли воды. Длина волны колебаний в сухом воздухе превышает размер капли на 1,5–2 порядка, следовательно, взвесь капель в воздухе колеблется как сплошная среда. Для возбуждения колебаний капли необходимо смещение частиц газа, сравнимое по порядку с радиусом капли.

Полагая акустические колебания среды гармоническими, смещение можно записать как

$$\Delta X = a \sin(2\pi v t),$$

где *а* — амплитуда колебаний. Колебательная скорость среды может быть вычислена как

$$v = 2\pi v a \cos(2\pi v t)$$
,

что позволяет определить звуковое давление

$$p_a = \rho_m c_m v = 2\pi \rho_m c_m v a \cos(2\pi v t),$$

где ρ_m — плотность взвеси капель в воздухе; c_m — скорость звука в газокапельной среде.

Интенсивность звука

$$I_a = \frac{\left\langle p_a^2 \right\rangle_t}{\rho_m c_m} = 2\pi^2 a^2 \rho_m c_m v^2$$

Уровень звукового давления

$$L_p = 20 \lg \frac{2\pi a \rho_m c_m v}{20\mu}.$$

Результаты расчета значений интенсивности звука, уровня звукового давления и мощности звука на излучателе диаметром 150 мм приведены в табл. 2.

Таблица 2

Значения интенсивности звука, уровня звукового давления и мощности звука на излучателе диаметром 150 мм

a / R	а, мм	I_a , BT/m ²	<i>L</i> _p , дБ	<i>N</i> , Вт
0,01	$7,0 \cdot 10^{-3}$	1,44	125	0,03
0,05	$3,5 \cdot 10^{-2}$	$3,60 \cdot 10^{1}$	139	0,64
0,1	7,0 · 10 ⁻²	$1,44 \cdot 10^{2}$	145	2,54
0,3	$2,1 \cdot 10^{-1}$	$1,30 \cdot 10^{3}$	155	22,89
0,5	$3,5 \cdot 10^{-1}$	$3,60 \cdot 10^{3}$	159	63,58
1,0	7,0 · 10 ⁻¹	$1,44 \cdot 10^4$	165	254,30

В потоке воздуха капля подвергается воздействию потока, которое также вызывает колебания поверхности капли. Для определения взаимного влияния потока воздуха и звуковых возмущений на колебания поверхности капли воды была проведена серия экспериментов.

Экспериментальная установка. Экспериментальная установка состояла из стальной трубки наружным диаметром 1,0 мм и внутренним диаметром 0,8 мм, покрытая силиконовой пленкой толщиной 0,05 мм для предотвращения смачивания водой. Стальная трубка установлена вертикально по оси канала диаметром 40 мм, в котором создавался поток воздуха. Трубка выступала над срезом канала на 5 мм. Через трубку подавалась вода в количестве, достаточном для образования капли диаметром 2 мм.

Скорость потока воздуха в канале измерялась трубкой Пито, соединенной с дифференциальным манометром *Testo 510*. Звуковые колебания создавались динамической головкой *Celestion Truvox* (5332A) *TF 0818* с усилителем *E-39 GXH0350 SIG GmbH*. Частоту колебаний задавали генератором импульсов ГЗ-33 и контролировали с использованием осциллографа *RIGOL DS1054*. Динамическая головка установлена на расстоянии 100 мм от капли так, чтобы ось симметрии проходила через каплю. Уровень звукового давления в месте расположения капли определяли цифровым измерителем уровня шума *AZ 8922*.

Визуализацию капли проводили высокоскоростной камерой *Phantom-SEO710* с частотой съемки 2000 кадр/с. Схема экспериментальной установки приведена на рис. 1.

Рис. 1. Схема экспериментальной установки: 1 — капля воды; 2 — канал с потоком воздуха; 3 — высокоскоростная камера; 4 — источник звуковых колебаний

Экспериментальные результаты. В результате экспериментов получены последовательности фотографий капли в потоке через равные промежутки времени (рис. 2).

Рис. 2. Фотографии капли с интервалом 10 мс (скорость потока воздуха 10 м/с, частота акустических колебаний 750 Гц, уровень звукового давления 120 дБ)

Фотографии подвергнуты автоматизированной обработке, заключавшейся в определении крайних левой (x_1) , верхней (y) и правой (x_2) точек капли в каждый момент времени (рис. 3, *a*). Из полученных зависимостей вычислены колебания центра масс по горизонтальной (x_c) и вертикальной (y_c) осям и горизонтального размера капли (d) (рис. 3, *б*). Вертикальная граница отсчитывалась от плоскости среза трубки, горизонтальная от оси трубки.

В работе исследован отклик на периодическое воздействие на каплю, в связи с чем рассмотрим частотные характеристики колебаний капли (рис. 4).

Частотные спектры колебаний положения центра масс по горизонтальной и вертикальной осям и горизонтального размера капли приведены на рис. 4. Горизонтальные колебания центра масс капли имеют характерные частоты 45,4 и 118,2 Гц, вертикальные — 118,2 Гц, размер капли колеблется с частотами, Гц: 45,4; 100; 118,2; 190,9; 220,2; 272,7. Частота звукового воздействия среди частот колебаний капли не наблюдается.

Рассмотрим спектры колебаний размера капли при различных скоростях потока воздуха и частотах акустических колебаний (рис. 5).

Наибольшая амплитуда колебаний размера капли наблюдается при скорости потока воздуха 10 м/с при отсутствии акустического воздействия. Согласно спектрам, приведенным на рис. 6, при отсутствии акустического воздействия и увеличении скорости потока воздуха с 3,1 до 10 м/с амплитуда колебаний капли во всем диапазоне значений частоты повышается на 1,5 порядка.

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2022. № 1 61

Рис. 3. Зависимости положения границ капли от времени (*a*) и положения центра масс по горизонтальной и вертикальной осям и горизонтального размера капли от времени (*б*) (скорость потока воздуха 10 м/с, частота акустических колебаний 250 Гц, уровень звукового давления 118 дБ)

Рис. 4. Частотные характеристики колебаний центра масс по горизонтальной и вертикальной осям и горизонтального размера капли (скорость потока воздуха 10 м/с, частота акустических колебаний 250 Гц, уровень звукового давления 118 дБ)

При акустическом воздействии на каплю возможно как усиление, так и ослабление собственных колебаний капли в потоке воздуха. При определенных значениях частоты воздействия наблюдается существенный рост колебаний в широкой полосе частот (рис. 7, *a*).

При повышении скорости потока воздуха возрастает амплитуда собственных колебаний капли. При воздействии акустическими колебаниями частотой 750 Гц наблюдается увеличение амплитуды колебаний размера капли в 5 раз на частоте 9 Гц и в 4 раза на частоте 63,7 Гц. При воздействии

63

акустическими колебаниями частотой 1000 Гц наблюдается увеличение амплитуды колебаний размера капли до 3 раз в диапазоне значений частоты колебаний размера капли до 400 Гц (рис. 7, *6*).

Рис. 7 (начало). Спектры колебаний размера капли в потоке воздуха со скоростью 3,1 (*a*), 5 м/с (*б*) при различных значениях частоты акустического воздействия

Рис. 7 (окончание). Спектры колебаний размера капли в потоке воздуха со скоростью 10 м/с (*в*) при различных значениях частоты акустического воздействия

При повышении скорости потока воздуха до 10 м/с амплитуда колебаний в диапазоне значений частоты до 800 Гц возрастает до 0,3 мм. Воздействие акустических колебаний приводит к стабилизации капли в потоке и уменьшению амплитуды колебаний. При всех воздействиях амплитуда колебаний капли не превышает 0,06 мм (рис. 7, *в*).

Согласно теории неустойчивости Кельвина — Гельмгольца, с увеличением скорости потока воздуха амплитуда колебаний поверхности жидкости повышается. Поведение капли жидкости в газовом потоке определяется соотношением инерции газового потока и поверхностного натяжения границы раздела фаз, которое выражается числом Вебера

We =
$$\frac{\rho_{\Gamma}R_0{v_{\Gamma}}^2}{\sigma}$$
,

где $\rho_{\rm r}$ — плотность газа; R_0 — радиус капли; $\nu_{\rm r}$ — скорость газового потока.

При условиях эксперимента число Вебера капли в потоке меняется от 0,11 до 1,15, следовательно, капля колеблется под действием потока воздуха, но не дробится.

В соответствии с линейной теорией неустойчивости Кельвина — Гельмгольца [14, 15] волна на поверхности капли описывается зависимостью

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2022. № 1

$$\delta r = \operatorname{Re}\left[A_0 \exp\left(i(kx - \omega t)\right)\right],$$

где A_0 — амплитуда возмущений; k — волновое число; x — координата по длине дуги капли; ω — угловая частота колебаний.

Пренебрегая скоростью жидкости внутри капли и полагая, что плотность газа много меньше плотности жидкости, для угловой частоты колебаний можно записать следующее выражение:

$$\omega = \frac{\rho_{\Gamma}}{\rho_{\mathfrak{K}}} v_{\Gamma} k + k \sqrt{-\frac{\rho_{\Gamma}}{\rho_{\mathfrak{K}}}} v_{\Gamma}^{2} + \frac{\sigma}{\rho_{\mathfrak{K}}} k - \sqrt{2} \frac{\mu_{\mathfrak{K}}^{2}}{\rho_{\mathfrak{K}}^{2}} k^{2}$$

Волновое число определяется собственными гармониками колебаний капли:

$$k = \frac{n}{2\pi R_0}, n \in \mathbb{N}.$$

Первая гармоника соответствует колебаниям капли относительно оси трубки, вторая и выше — изменению формы капли. Зависимость частоты колебаний можно переписать в виде

$$\omega = \frac{n}{2\pi R_0} \frac{\rho_{\Gamma}}{\rho_{\pi}} v_{\Gamma} + \frac{n}{2\pi R_0} \sqrt{-\frac{\rho_{\Gamma}}{\rho_{\pi}} v_{\Gamma}^2 + \frac{\sigma}{\rho_{\pi}} \frac{n}{2\pi r} - \sqrt{2} \frac{\mu_{\pi}^2}{\rho_{\pi}^2} \frac{n^2}{4\pi^2 R_0^2}}.$$

Для поддержания постоянной амплитуды колебаний подкоренное выражение должно быть неотрицательным, что возможно только для гармоник

$$n \ge 2\pi \frac{r\rho_{\Gamma}v_{\Gamma}^2}{\sigma} = 2\pi \text{ We.}$$

Значения частоты колебаний капли под действием потока воздуха, при которых амплитуда колебаний постоянна, приведены в табл. 3.

Таблица 3

Ско-					Номе	р гармо	оники				
рость, м/с	1	2	3	4	5	6	7	8	9	10	11
3,1	70	381	778	1252	1793	2393	3048	3753	4504	5300	6137
5	-	-	446	918	1438	2013	2641	3318	4042	4809	5618
10	-	-	-	-	-	-	-	-	-	-	1650
Примечание. Отсутствующие значения соответствуют гармоникам, на ко- торых колебания затухают.											

Значения частоты, Гц, колебаний капли под действием потока воздуха

Наблюдаемое усиление амплитуды колебаний размера капли при скорости потока воздуха 3,1 м/с и частоте акустического воздействия 750 Гц (см. рис. 7, *а*) может быть объяснено резонансом третьей гармоники поверхностной волны Кельвина — Гельмгольца. Аналогичный эффект, но слабее, наблюдается при скорости потока воздуха 5 м/с и частоте акустического воздействия 750 и 1000 Гц (см. рис. 7, *б*). Здесь частоты акустического воздействия близки к частоте четвертой гармоники неустойчивости Кельвина — Гельмгольца. В остальных случаях при скоростях потока 3,1 и 5 м/с частота акустического воздействия попадает между модами неустойчивости Кельвина — Гельмгольца, и изменение спектра колебаний незначительно. При скорости потока 10 м/с все частоты акустического воздействия ниже характеристических частот неустойчивости Кельвина — Гельмгольца, что приводит к подавлению колебаний капли.

Выводы. Акустическое излучение частотой 250, 500, 750 и 1000 Гц и с уровнем звукового давления 120 дБ взаимодействует с собственными колебаниями капель жидкости в потоке воздуха и приводит к усилению или ослаблению собственных колебаний.

При низких значениях скорости потока воздуха 3,1 и 5 м/с воздействие частотой 750 и 1000 Гц усиливает собственные колебания капли в 3–5 раз в широком диапазоне значений собственных частот.

При скорости потока воздуха 10 м/с акустическое воздействие стабилизирует поверхность капли и снижает амплитуду колебаний в 8 раз и более.

ЛИТЕРАТУРА

[1] Гунько Ю.П., Кавун И.Н. Нестационарный псевдоскачок в ударной трубе. Прикладная механика и техническая физика, 2020, № 2, с. 71–80. DOI: https://doi.org/10.15372/PMTF20200207

[2] Липатов И.И., Ляпидевский В.Ю., Чесноков А.А. Модель нестационарного псевдоскачка в баротропном течении газа. *ДАН*, 2016, т. 466, № 5, с. 545–549. DOI: https://doi.org/10.7868/S086956521605011X

[3] Забайкин В.А. Управление псевдоскачком нестационарным воздействием. Физико-химическая кинетика в газовой динамике, 2011, т. 12. URL: http://chemphys.edu.ru/issues/2011-12/articles/353

[4] Снегирёв А.Ю., Сажин С.С., Талалов В.А. Модель и алгоритм расчета теплообмена и испарения капель диспергированной жидкости. *НТВ СПбГПУ*. *Физикоматематические науки*, 2011, № 1, с. 44–54.

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2022. № 1

[5] Abramzon B., Sirignano W.A. Droplet vaporisation model for spray combustion calculations. *Int. J. Heat Mass Transf.*, 1989, vol. 32, iss. 9, pp. 1605–1618. DOI: https://doi.org/10.1016/0017-9310(89)90043-4

[6] Мещеряков Е.А., Яшина В.В. Квазиодномерная отрывная модель псевдоскачка в канале. *Ученые записки ЦАГИ*, 2013, т. 44, № 5, с. 46–63.

[7] Алиев Э.К., Володин В.В., Голуб В.В. и др. Сравнительные тепло- и массообменные испытания пакетных насадок с пленочным и капельным течением жидкости. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2019, № 4 (85), с. 4–21. DOI: http://doi.org/10.18698/1812-3368-2019-4-4-21

[8] Александров А.А., Акатьев В.А., Тюрин М.П. и др. Результаты экспериментальных исследований процессов тепломассообмена в закрытом двухфазном термосифоне. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2018, № 4 (79), с. 46–58. DOI: http://doi.org/10.18698/1812-3368-2018-4-46-58

[9] Горшкова В.М. Воздействие низкочастотного ультразвука на биологическую ткань. *Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки*, 2015, № 6 (63), с. 63–67. DOI: http://doi.org/10.18698/1812-3368-2015-6-63-67

[10] Музипов Х.Н., Савиных Ю.А. Новая технология повышения производительности добывающих скважин с помощью ультразвука. *Нефтяное хозяйство*, 2004, № 12, с. 53–54.

[11] Муллакаев М.С., Абрамов В.О., Печков А.А. и др. Ультразвуковая технология повышения продуктивности низкодебитных скважин. *Нефтепромысловое дело*, 2012, № 4, с. 25–32.

[12] Хабибов Ф.Ю., Джураев Х.Ф., Абдурахмонов О.Р. Интенсификация процесса сушки сельхозпродуктов комбинированным методом подвода энергии. *Пищевая промышленность*, 2013, № 7, с. 24–25.

[13] Rayleigh J.W.S., Lindsay R.B. The theory of sound. Dover Publ., 1945.

[14] Funanda T., Joseph D.D. Viscous potential flow analysis of Kelvin — Helmholtz instability in a channel. *J. Fluid Mech.*, 2001, vol. 445, no. 6, pp. 263–283. DOI: https://doi.org/10.1017/S0022112001005572

[15] Бойко А.В., Довгаль А.В., Козлов В.В. Неустойчивость отрывного течения за двумерными элементами неровности поверхности в низкоскоростном воздушном потоке (обзор). *Теплофизика и аэромеханика*, 2017, № 2, с. 171–178.

Володин Владислав Владимирович — канд. физ.-мат. наук, старший научный сотрудник лаборатории № 20 нестационарных газодинамических процессов ОИВТ РАН (Российская Федерация, 125412, Москва, ул. Ижорская, д. 13, стр. 2).

Голуб Виктор Владимирович — д-р физ.-мат. наук, профессор, главный научный сотрудник лаборатории № 20 нестационарных газодинамических процессов ОИВТ РАН (Российская Федерация, 125412, Москва, ул. Ижорская, д. 13, стр. 2).

⁶⁸ ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2022. № 1

Ельянов Артем Евгеньевич — младший научный сотрудник лаборатории № 20 нестационарных газодинамических процессов ОИВТ РАН (Российская Федерация, 125412, Москва, ул. Ижорская, д. 13, стр. 2).

Микушкин Антон Юрьевич — научный сотрудник лаборатории № 20 нестационарных газодинамических процессов ОИВТ РАН (Российская Федерация, 125412, Москва, ул. Ижорская, д. 13, стр. 2); ассистент кафедры «Физика» МГТУ им. Н.Э. Баумана (Российская Федерация, 105005, Москва, 2-я Бауманская ул., д. 5, стр. 1).

Просьба ссылаться на эту статью следующим образом:

Володин В.В., Голуб В.В., Ельянов А.Е. и др. Экспериментальное исследование колебаний капли воды в потоке воздуха при акустическом воздействии. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2022, № 1 (100), с. 57–71. DOI: https://doi.org/10.18698/1812-3368-2022-1-57-71

EXPERIMENTAL STUDY OF WATER DROP VIBRATIONS IN AIRFLOW UNDER ACOUSTIC IMPACT

V.V. Volodin ¹	vlad@ihed.ras.ru
V.V. Golub ¹	golub@ihed.ras.ru
A.E. El'yanov ¹	elyanov14@physics.msu.ru
A.Yu. Mikushkin ^{1, 2}	mikushkin@bmstu.ru

¹Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russian Federation

²Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract

Keywords

The study focuses on the interaction between a gas flow and liquid drops and describes the proposed experimental setup in detail. First, we experimentally studied the vibrations of a drop with a diameter of 1.4 mm in the airflow with a speed of 3.1-10 m/s and by a high-speed *Phantom* camera with a frame rate of 2000 fps, we took a series of photographs of the drop in the airflow at regular intervals. Then, we calculated the spectra of free vibrations of the drop in a gas flow, as well as the vibrations affected by sound vibrations of the air with a frequency of 0-1000 Hz and a sound pressure level of 0-121 dB, and found the gas flow and acoustic radiation parameter regions, at which the drop vibrations amplitude is higher or lower. Next, by the Kelvin — Helmholtz instability theory, we theoretically analyzed Drop vibrations, airflow, acoustic impact, high-speed recording, automatic image processing, vibration spectrum, Kelvin — Helmholtz instability

the airflow-acoustic radiation mutual influence on the	
liquid drop and considered the drop possible values	
of the Weber number under experimental conditions.	
Findings of the research show that the drop does not	
fragmentize in the airflow. Finally, we found the drop	Received 05.04.2021
vibration frequency values in the airflow, at which the	Accepted 09.11.2021
amplitude of oscillations is constant	© Author(s), 2022

REFERENCES

[1] Gun'ko Yu.P., Kavun I.N. Unsteady pseudo-jump in a shock tube. J. Appl. Mech. Tech. Phy., 2020, vol. 61, no. 2, pp. 217–224.

DOI: https://doi.org/10.1134/S0021894420020078

[2] Lipatov I.I., Liapidevskii V.Yu., Chesnokov A.A. An unsteady pseudoshock model for barotropic gas flow. *Dokl. Phys.*, 2016, vol. 61, no. 2, pp. 82–86. DOI: https://doi.org/10.1134/S1028335816020075

[3] Zabaykin V.A. Control of pseudo shock by non-stationary effect. *Fiziko-khimicheskaya kinetika v gazovoy dinamike* [Physical-Chemical Kinetics in Gas Dynamics], 2011, vol. 12 (in Russ.).

Available at: http://chemphys.edu.ru/issues/2011-12/articles/353

[4] Snegirev A.Yu., Sazhin S.S., Talalov V.A. A model and computational algorithm for heat exchange and evaporation of droplets of dispersed liquid. *NTV SPbGPU. Fiziko-matematicheskie nauki* [St. Petersburg State Polytechnical University Journal. Physics and Mathematics], 2011, no. 1, pp. 44–54 (in Russ.).

[5] Abramzon B., Sirignano W.A. Droplet vaporisation model for spray combustion calculations. *Int. J. Heat Mass Transf.*, 1989, vol. 32, iss. 9, pp. 1605–1618. DOI: https://doi.org/10.1016/0017-9310(89)90043-4

[6] Meshcheryakov E.A., Yashina V.V. Quasi-one-dimensional separation model of a pseudoshock in a channel. *Uchenye zapiski TsAGI*, 2013, vol. 44, no. 5, pp. 46–63 (in Russ.).

[7] Aliev E.K., Volodin V.V., Golub V.V., et al. Comparative heat and mass transfer tests of structured packings with film and droplet flow. *Herald of the Bauman Moscow State Technical University, Series Natural Sciences*, 2019, no. 4 (85), pp. 4–21 (in Russ.). DOI: http://doi.org/10.18698/1812-3368-2019-4-4-21

[8] Aleksandrov A.A., Akat'ev V.A., Tyurin M.P., et al. Results of experimental studies of heat-and-mass transfer processes in a two-phase closed thermosyphon. *Herald of the Bauman Moscow State Technical University, Series Natural Sciences*, 2018, no. 4 (79), pp. 46–58 (in Russ.). DOI: http://doi.org/10.18698/1812-3368-2018-4-46-58

[9] Gorshkova V.M. Impact of low-frequency ultrasound on biological tissue. *Herald of the Bauman Moscow State Technical University, Series Natural Sciences*, 2015, no. 6 (63), pp. 63–67 (in Russ.). DOI: http://doi.org/10.18698/1812-3368-2015-6-63-67

Экспериментальное исследование колебаний капли воды в потоке воздуха...

[10] Muzipov Kh.N., Savinykh Yu.A. New ultrasound technologies of improving the flow rate of producing wells. *Neftyanoe khozyaystvo* [Oil Industry], 2004, no. 12, pp. 53–54 (in Russ.).

[11] Mullakaev M.S., Abramov V.O., Pechkov A.A., et al. Ultrasound technology of increasing stripped wells productivity. *Neftepromyslovoe delo* [Oilfield Engineering], 2012, no. 4, pp. 25–32 (in Russ.).

[12] Khabibov F.Yu., Dzhuraev Kh.F., Abdurakhmonov O.R. Intensification of agricultural products of drying by the combined method of energy supply. *Pishchevaya promyshlennost*' [Food Industry], 2013, no. 7, pp. 24–25 (in Russ.).

[13] Rayleigh J.W.S., Lindsay R.B. The theory of sound. Dover Publ., 1945.

[14] Funanda T., Joseph D.D. Viscous potential flow analysis of Kelvin — Helmholtz instability in a channel. *J. Fluid Mech.*, 2001, vol. 445, no. 6, pp. 263–283. DOI: https://doi.org/10.1017/S0022112001005572

[15] Boiko A.V., Dovgal A.V., Kozlov V.V. Instability of flow separation at 2D surface imperfections in a low-speed air stream (review). *Thermophys. Aeromech.*, 2017, vol. 24, no. 2, pp. 167–173. DOI: https://doi.org/10.1134/S0869864317020020

Volodin V.V. — Cand. Sc. (Phys.-Math.), Senior Research Fellow, Laboratory of Non-Steady-State Gas Dynamic Processes, Joint Institute for High Temperatures, Russian Academy of Sciences (Izhorskaya ul. 13, str. 2, Moscow, 125412 Russian Federation).

Golub V.V. — Dr. Sc. (Phys.-Math.), Professor, Leading Research Fellow, Laboratory of Non-Steady-State Gas Dynamic Processes, Joint Institute for High Temperatures, Russian Academy of Sciences (Izhorskaya ul. 13, str. 2, Moscow, 125412 Russian Federation).

El'yanov A.E. — Junior Research Fellow, Laboratory of Non-Steady-State Gas Dynamic Processes, Joint Institute for High Temperatures, Russian Academy of Sciences (Izhorskaya ul. 13, str. 2, Moscow, 125412 Russian Federation).

Mikushkin A.Yu. — Research Fellow, Laboratory of Non-Steady-State Gas Dynamic Processes, Joint Institute for High Temperatures, Russian Academy of Sciences (Izhorskaya ul. 13, str. 2, Moscow, 125412 Russian Federation); Assist. Lecturer, Department of Physics, Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, str. 1, Moscow, 105005 Russian Federation).

Please cite this article in English as:

Volodin V.V., Golub V.V., El'yanov A.E., et al. Experimental study of water drop vibrations in airflow under acoustic impact. *Herald of the Bauman Moscow State Technical University, Series Natural Sciences*, 2022, no. 1 (100), pp. 57–71 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2022-1-57-71