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Abstract

It is shown that forces acting on the mechanical system
points could depend on accelerations of the system
points. Differential equation system of the mechanical
system motion appears to be implicit. It is not resolved
with respect to senior derivatives. Fundamental math-
ematical problems appear associated with possibility
and uniqueness of these equations’ solution with re-
spect to the senior derivatives. Such problems are
common in mechanical systems with dry sliding fric-
tion and rolling friction. Such problems are missing in
the point dynamics. However, such problems are rather
typical in more complex mechanical systems appearing
in the study of a rigid body motion, which entire mass
is concentrated in a single point, as well as in systems
with one degree of freedom. Four fairly simple exam-
ples of mechanical systems are considered, and their
motion is described by implicit differential motion
equations. Situations could appear in these systems,
when motion equations are not solvable with respect
to the senior derivatives (motion equations are miss-
ing), as well as situations, when there are several solu-
tions with respect to senior derivatives (there are several
different systems of the mechanical system motion
equations). At the same time, one of the fundamental
principles of mechanics is not fulfilled, i.e., the principle
of determinism
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Introduction. Axioms of dynamics are based on the determinism principle [1],

which states that initial state of a mechanical system unambiguously determines

further system behavior exposed to the given forces action. Determinism
principle is a particular case of the principle of experience repeatability
in physics. If one and the same experiment is carried out under the same

conditions, one and the same result is obtained.
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Dry Friction and Mechanical System Motion Implicit Equations

Determinism principle served as the basis in formulation of Newton’s
second law, according to which differential equation of the material point
motion exposed to the F force action has the following form:

mr =F (7,7, t), (1)
where m is the point’s mass; 7 is its radius vector; ¥ =7 is the point velocity;

F is the force being the function of the point position, velocity and time. If the
initial state of the point is set as:

7(t)=7, 7(t0)=", 2)

then the main problem of dynamics in determining further motion of the point
is the Cauchy problem. And it has a unique solution, if conditions of the
theorem of the differential equations’ existence and unique solution are satisfied
[1-5].

Note that although mechanics assumes by default that all mechanical
systems are deterministic, there are also non-deterministic systems. Examples
of such systems for the simplest case of the material point rectilinear motion are
provided in [4-6]. In these systems, the one and the same initial state (2) may
correspond to several different solutions of the motion equations (1). Examples
of mechanical system nondeterministic behavior in the impact theory are
considered in [7].

Problem statement. Differential equation of the point motion (1) is trans-
ferred to the mechanical system. For the n material points system, the motion
differential equations have the following form [1-5]:

mte = Fe, k=1,2,...,n, (3)

where my is the mass of the system k-th point; 7 is its radius vector. Force F
acting on the system k-th point is a function of position and velocities of all
points in the system and time:

Fe=F (f,5 s T s Booeos Tnn 1), k=1,2,..,m.

Consequently, equations of the mechanical system motion form a system
of differential equations resolved with respect to the senior derivatives.

However, situations are possible, when forces acting on the system points
also depend on the system points’ accelerations:

FBe=F (BB T T Boeees Tps Ty Tarees Tot)s k=12,0m (4)

The system of differential equations of the mechanical system motion appears
to be implicit. It is not solved with respect to the senior derivatives. Fundamen-
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tal mathematical problems appear associated with possibility and unique solu-
tion of these equations with respect to the senior derivatives.

Naturally, implicit form of the motion equations is preserved when passing
to generalized coordinates using general dynamics theorems or Lagrange
equations of the second kind.

Such situations are typical for mechanical systems with dry friction [8-11].
Such situations do not appear in the point dynamics, but it could become rather
typical in more complex mechanical systems, including cases of studying
motion of a rigid body, which mass is concentrated in a single point, as well as in
systems with one degree of freedom.

This is due to the fact that in accordance with Coulomb’s law the dry
friction force in sliding has the following form:
Fy=-f |N||%, (5)

where f is the sliding friction coefficient; N is the normal reaction; v is the

relative sliding speed. Normal reaction could depend on the system points
accelerations. Then, motion equations have the implicit form (3), (4).
In problems with dry friction, another complication arises due to the fact that
at v=0 the dry friction force could take any value in modulus not exceeding
the maximum |15f,| <f |N

, and is directed in the direction opposite to the

direction of possible sliding. This could lead to the existing stagnation areas,
and falling there at zero speed leads to cessation of sliding.

If the bodies are able not only to slide relative to each other, but also roll,
then, in addition to the sliding friction force, the rolling friction moment arises
determined by similar ratios. Alternations of sliding phases, of rolling with
slipping and rolling without slipping become possible.

Such systems were the subject of discussion in connection with the Painlevé
paradoxes [8-16] associated with the fact that motion equations in certain cases
turn out to be either unsolvable with respect to senior derivatives, or have
several solutions. In other words, either there are no differential system motion
equations, or there are several different systems of the system motion equations.
This is contrary to the determinism principle.

As noted above, nondeterministic behavior of a mechanical system is also
possible in systems without friction with motion equations resolved with respect
to the senior derivatives.

Works [17, 18] are devoted to mathematical conditions for existence
and unique solution of implicit differential equations of the mechanical systems
motion in the general form.
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Let us dwell on some examples of implicit equations of the mechanical
systems motion with dry sliding friction and rolling friction. Let us consider
a slightly modified Painlevé example and three more examples of mechanical
systems with friction, which lead to implicit differential equations of the system
motion. In all examples, situations arise similar to the Painlevé paradoxes.

Homogeneous bar (ladder). The bar
restson horizontal floor and leans on
vertical wall (Fig. 1). Bar mass is m, bar
length is AB =2I. Point C is the bar center
of mass, AC=CB=1I Sliding friction
coefficients at points A and B are equal
to f. Bar position is determined by angle o,
which it forms with the vertical.

At the ¢ =0 initial moment of time, the
speed of point A is directed downward:

¢(0) =g, P(0)=wmp>0.  (6)

Let us denote by x, y coordinates of

Fig. 1. Homogeneous bar (ladder)

the C bar center of mass, then
x=Ising, y=1Icos@.
Differentiating these constraint equations twice, we obtain
¥=Ilcos@p—Isinp¢p?, y=-IsingP—1Icosp¢p?. (7)

Let us denote by N, N, the normal reactions, and by F, F the friction

forces (see Fig. 1). Let us consider the stage of the bar motion, while contact with
the floor and the wall is maintained, i.e., N; =20 and N, >0. In accordance
with Coulomb’s law (5):

Flszb FZZ,ﬂVZ-

The theorem on the center of mass motion has the following form:
mx =Ny — fN;, my =—mg+N; + fN,.
Resolving these relations with respect to N;, N,, the following is obtained:

_TfErgry o _E+f(g+d)

N ,
! 1+ f2 2 1+ f2

In accordance with the theorem on alteration in the angular momentum relative
to the center of mass:
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. )
mT(P:(NI_sz)lSIH(P—(N2+fN1)lCOS(p.

From the last two relations and (7), the implicit differential motion equation is
obtained:

(1+f2)('f)=3[2f(p2 —(l—fz)('p—ngcosq)+(1—f2)gsin(pJ,
which is easily resolved with respect to the senior derivative:

2(2-f2)$ =3 2f¢* —2fg cosx +(1- f2 ) g sino . (8)

At f= V2, the motion equation does not contain acceleration. It has
no solutions for acceleration, if the initial state does not satisfy the condition
of equality to zero of the right-hand side of equation (8). Differential system
motion equation does not exist. An analogue of the Painlevé paradoxes
is obtained.

Differential motion equation (8) at f #+2 has the first integral. Let us
denote by ® = ¢ the angular velocity, and using substitution

. _do _dodo _ do 1 do?

e (©)
dt do dt dp 2 do

let us exclude time from equation (8). Then, an inhomogeneous linear
differential equation is obtained with constant coefficients for dependence of the

®? angular velocity square on the rotation angle ¢:
2— 2 do?

—2fo*==2focos+(1—f2)gsinq,
T fgcos@+(1-f2)gsing

which has the following solution: ? = ce*® +asin ¢ +b cos ®, where

~6fg(5-4f2) —3g(2-7f2+f4)
a= ; b= ;
4+32f%+ f* 4+32f%+ f*

6f
2-f2
Wheel with displaced center of mass. Inhomogeneous disc is rolling
without slipping along a horizontal guide (Fig. 2). The disc is in the vertical
plane. The C disc center of mass does not coincide with its geometric center A.

c:((o%—asin(po—bCOS(po)e_""’O; A=

Mass of the disc is m, disc radius is r, distance from the disc center to the
center of mass is AC =1, disc moment of inertia relative to the center of mass is

J. = mp?. Disc position is determined by generalized coordinate ¢. The rolling

8 ISSN 1812-3368. Bectuuk MI'TY um. H.9. baymana. Cep. EctrecTBennble Hayku. 2021. Ne 6



Dry Friction and Mechanical System Motion Implicit Equations

friction coefficient equals to 8. The disc 7

is rolling by inertia and is not bouncing
over the supporting surface.

Let us denote by x, y coordinates
of the wheel center point A, through
Xc, Yc — coordinates of the disc center
of mass. Then

Xc=x—IsinQ=r¢p—1Isin@;
ye=y—lcosp=r—Icos. 0

Differentiating these relations twice, the  Fig. 2. Wheel with displaced center
following is obtained: of mass

¥. =rp—Ilcos P +1sin pPp?; y. =Isin @P +1cos ep>. (10)

In accordance with the theorem on the center of mass motion and the theorem
on the angular momentum alteration relative to the center of mass, the follow-
ing is obtained:

mi. =—Ff, mj.=N—mg, mpz('f):—Mﬁ+Ffr(r—lcosq))—lein(p. (11)

Then, taking into account (10), the following is obtained from the first two
equations (11):

Ff =—m(r(p—lcoscp('p+lsin(p(p2); N =mg+ml(sin(p€p+coscp(i)2).
Substituting these relations into the third of equations (11), let us write
m[(p2 +r2 + 12 —2rl cos (p) ¢+ rlsin (p('pz] =-—mglsin o — Mjp.

Suppose that the disk is not bouncing over the supporting surface, i.e.,
N 2 0. For this, it is necessary and sufficient that ¢ and ¢ do not exceed the
critical values:

mtin(sin(p('p+c05(p('p2)zm}n@k—%. (12)

The rolling friction moment is
Mg =3N sgn = 8m[g+l(sin(p('p+coscp('p2)]sgn(p.
Implicit differential equation of the wheel motion has the following form:
m[(p2 +r2 +]? —2rlc05(p)('p+rlsin(p('p2] =
= —mglsin ¢ —dmg sgn(p—f)m(lsin QP +1 cos pp? )sgn(p
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and is easily resolved with respect to the senior derivative. As a result

(pz Fr2 412 —2rlcos(p+SIsin(psgn(b)if>=

=I(rsing+38cospsgn) §? — gl sin @ —g sgn ¢. (13)

Equation (13) has no solutions for acceleration, when the coefficient in front of
¢ is zero. The Painlevé paradoxes analogue is obtained.

Next, let us consider the case, where coefficient in front of ¢ is not equal
to zero.

Note that it is necessary to substitute ¢ from equation (13) into condition
(12) of the disk non-bouncing over the supporting surface. Then, it has the fol-
lowing form:

I(rsin@+38cospsgn)p* + gl sinp+8g sgn ¢

. . : g
min| — sin@+cosp(? |>—<.
t p? +r2 +12 —2rl cos ¢ + 8l sin @ sgn ¢ i PP !
According to definition of the function sgn:
sgn0e[-1, 1], (14)

i.e., it is able to take any value according to a module not exceeding 1.
From (14) it follows that the motion equation (13) has the stagnation zones.
If the disk falls with the ¢ =0 zero angular velocity into the region, where

|sin(p| S?, (15)

then it follows from (14) that ¢ =0, therefore, the disk stops.

If friction is high &>1, then stagnation zone (15) covers all possible disc
positions. The disc moves in one direction (without changing the angular
velocity sign).

If the friction is low &</, then stagnation zones (15) form symmetric
regions in the positions’ vicinity, when the center of mass stays on the same
vertical line with the disc geometric center, i.e., the extreme upper and extreme
lower positions of the center of mass. If zero value of the angular velocity
is reached during the disc first movement outside the stagnation zone, then disc
motion at the final stage acquires the form of damped oscillations and ends with
a stop in the stagnation zone near the lowest position of the center of mass.

Using substitution (9), the motion equation (13) is reduced to an inhomo-
geneous linear differential equation with variable coefficients for dependence

of the w? angular velocity square on the angle of rotation o:
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do?

(p2 +r2+? —2rlcos<p+SZsin(psgno))d—+

+21(rsin@+3cos psgn®)w? =—2glsin ¢ —28¢ sgn o,

which determines the system phase trajectories.

Painlevé paradoxes. Elliptical pendulum is moving in the vertical plane
(Fig. 3). The A slider moves along a rough horizontal guide. The sliding friction
coefficient is equal to f. The AB weightless bar with the length of 2/, at which

end there is the B material point, is pivotally
attached to the slider. Slider dimensions
could be neglected. Masses of the A slider
and the B material point are the same and
equal to m. Friction in the A hinge could be
neglected. Let us denote by N and Fj

both the normal reaction and the sliding
friction force acting on the A slider.

Let us introduce the generalized
coordinates: x is the A slider position; ¢
is the angle of bar deviation from the
vertical. The C system center of mass is
located in the AC=CB=I bar middle,
and its coordinates are equal to

Y

AN

Fig. 3. Elliptical pendulum

xc=x+Ising, y.=-lcosp. Twice differentiating these ratios, the following is

obtained:

¥.=%+1lcos@P—1Isinp?, j.=1Isin e +1cospp>.

In accordance with the theorem on the center of mass motion, we have

2”’!55c=2m(5é+lc05(p('ﬁ—lsin(p¢2):Fﬁ; (16)

2my, :2ml(sin QP+ cos (p(pz):N—ng. (17)

It follows from the theorem on alteration in the angular momentum with

respect to the center of mass that

2ml%$ = —Nlsin @ — Fplcos . (18)

Substituting (16) and (17) into (18), the following is obtained:
2Ip+Xcosp+gsing=0. (19)

By virtue of the Coulomb’s law (5):

Ffy =—f|N|sgn % =—kfN, (20)
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where
k =sgn(Nx). (21)
At Nx =0, k=+=1,
and
kNx > 0. (22)

Let us substitute (20) into (16) and solve (16), (17), and (19) with respect
to N, X, ¢ asa system of three linear algebraic equations. As a result

KN=2(g+lcos<p('p2); (23)
A% =21¢p? (sinp—kf cos<p)—kfg(1+cos2 (p)gsin(p+gsin(pcoscp; (24)
kl(b:(g+lcoscp(b2)(kfcosq)—sin(p). (25)

Here
A =1+sin? @—kf sin ¢ cos . (26)

Equations (24), (25) form a system of the motion differential equations
resolved with respect to the senior derivatives. Equations (21)-(23) and (26)
make it possible to determine the k and A values. In this case, A is uniquely
determined by the k value. The question remains about the unambiguousness of
their solution with respect to k.

Let the f friction coefficient be low enough, so that for any values ¢ :

1+sin? @ — f sin@cos@ >0 and 1+sin ¢ + f sinpcos @ > 0. (27)

Then A is always higher than zero, and in any current state the x, ¢, %, ¢

relations (21)-(23) and (26) uniquely determine the k and A values.
Note that conditions (27) are satisfied for f <2. Indeed, in this case

1+sin? @ £ fsin@cos@=1+sin? ¢ — f|sinpcos | >1+
+sin? (p—2|sin(pcos (p| =1+ (|sin(p|—|cos (p|)2 —cos? ¢ >1—cos? ¢ >0.
Let the friction coefficient be high enough and condition (27) is not

satistied. For definiteness, let us assume that in the current system state
¢e(0, (1/2)n), then

1+sin? ¢ — fsin@cos@ <0 and 1+sin? ¢ + f sin ¢ cos > 0. (28)

Hence, it follows that for x>0 it is impossible to satisfy conditions (21) (23),
(26). For k=1, it follows from (26), (28) that A <0, and from (23) — N <0,
then condition (22) is not satisfied. For k=—1, we have A >0 and N >0, then
condition (22) is not satisfied. Motion equations are undecidable with respect to
the senior derivatives; no solution of the form (24), (25) exists.
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Under x <0, conditions (21)-(26) are satisfied by both k ==1 solutions,
and there are two different types of the motion equations (24), (25).
Consequently, the determinism principle is not fulfilled.

These contradictions to the basic principles of mechanics published by
P. Painlevé [8] are called the Painlevé paradoxes [9-16].

It also should be noted that degeneration is observed at A =0. In this case,
equations (22)-(23) have no solutions for accelerations. Another paradox that
Painlevé did not mention.

Mathematical pendulum (Fig. 4) rotates around the
horizontal rotation axis, i.e., it moves in a vertical plane
around the O hinge. The pendulum consists of a
weightless bar with a length of OA =1I. At the end of the ﬁ%
bar there is the A material point with the m mass.

Pendulum position is determined by its ¢ angle of the bar
deviation from the vertical. —

Suppose that dry friction is in O the hinge, and it is
reduced to the friction moment, which is proportional to

the R reaction modulus in the O hinge: y

Mfp=-6 |R| sgn ¢, (29) mg

8 is the friction coefficient of friction having the length  pjg 4. Pendulum
dimension.

By virtue of the theorem on alteration in the angular momentum with
respect to the O point, we have

ml*§ = —mglsin g+ M. (30)

From the theorem on the center of mass motion it follows that in projection
on the natural trihedron axis:

ma, =ml(? = —mg cos @ + R; ma, =mlp =—mglsin ¢ +R,.
Then

|R|=R?+R? =m\/(lfp2+gc05@)2+(liﬁ+g8in@)2- (31)

It follows from (29)-(31) that differential equation of the pendulum motion
in implicit form is an irrational equation with respect to the senior derivative
and has the following form:

1(Ip+gsing) = —8\/(1('[)2 + g cos (p)2 +(l('['>+gsin(p)2 sgn Q. (32)
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Getting rid of irrationality by squaring, the following is obtained:

(12—82)(l¢+gsin(p)2 =82(l('p2+gcoscp)2. (33)

For large values of the friction coefficient 8> 1, equation (33) has no solutions.
We are facing a paradox similar to the Painlevé paradoxes. Differential equation
of the mechanical system motion is missing. Consequently, the system motion is
impossible.

For § <1, equation (33) has two solutions:

l(@z—gsin@iﬁ‘l(pz+gmsw‘.

One of them is extraneous obtained by squaring equation (32). By virtue of (32),
only one of these solutions is suitable:

. ) ) ) i
l(p:—gsm(p—ﬁ‘l(pz+gcoscp‘sgn(p, (34)

which is the explicit differential equation of the pendulum motion.
Equation (24) has stagnation zones. If the pendulum falls with zero angular
velocity ¢ =0 into the region, where

d
<

|tg (P| = m ] (35)
then from (14) it follows that the right-hand side in the motion equation (34) is
equal to zero, and the pendulum stops. Condition (35) is satisfied in the vicinity
of the extreme lower and the extreme upper positions of the pendulum.

For a pendulum in weightlessness (g =0), the motion differential equation
(34) takes the following form:

.. & ., .
———— : 36
Dry friction manifests itself as viscous (in this case, proportional to the angular
velocity square).
Equation (36) could be easily solved analytically. Direction of rotation is not
changing. For definiteness, let us assume that ¢(0) = @g, ®(0) =wo >0, then

(QN)) 1
o= , 0=0¢ +—1In(1+wkt),
1+(D()kt ¢ =% k ( 0 )

where

o

‘”2—82 '

k=
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Conclusion. Situations are rather typical in mechanical systems with dry
friction, when motion of a system is described by implicit differential motion
equations unresolved with respect to the senior derivatives. These equations
may turn out to be unsolved with respect to the senior derivatives or have
several solutions. Such situations are called the Painlevé paradoxes.

In all the examples considered, dry friction leads to the appearance of forces
(moments) of resistance proportional to the square of velocity after resolving the
implicit motion equations with respect to the senior derivatives, i.e., dry friction
also manifests itself as viscous. A similar effect appears in systems with
transformed dry friction and in the multicomponent dry friction models [13, 14].
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